File size: 3,355 Bytes
aa6da07
 
 
a15c41a
 
99ff4e1
 
aa6da07
a15c41a
 
 
 
 
 
 
 
2560f7d
a15c41a
 
99ff4e1
a15c41a
2c0cc11
99ff4e1
 
2c0cc11
a15c41a
 
99ff4e1
2c0cc11
a15c41a
2c0cc11
 
a15c41a
2c0cc11
a15c41a
2c0cc11
aa6da07
 
 
 
 
99ff4e1
aa6da07
a15c41a
99ff4e1
aa6da07
 
 
 
 
 
 
 
a15c41a
 
 
2c0cc11
a15c41a
2c0cc11
 
a15c41a
 
2c0cc11
99ff4e1
a15c41a
99ff4e1
 
 
a15c41a
 
99ff4e1
 
a15c41a
 
99ff4e1
2c0cc11
aa6da07
a15c41a
99ff4e1
 
a15c41a
 
 
 
99ff4e1
 
a15c41a
 
 
 
99ff4e1
a15c41a
99ff4e1
aa6da07
a15c41a
aa6da07
 
 
 
 
 
99ff4e1
2560f7d
2c0cc11
 
a15c41a
2c0cc11
aa6da07
a15c41a
99ff4e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from fastapi import FastAPI, Query, HTTPException
import torch
import re
import time
import logging
from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM

# -------- LOGGING CONFIG --------
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s",
)
log = logging.getLogger("news-filter")

# -------- CARREGAMENTO DE MODELO --------
model_name = "habulaj/filter"
log.info("🚀 Iniciando carregamento do modelo e tokenizer...")

tokenizer = AutoTokenizer.from_pretrained(model_name)
log.info("✅ Tokenizer carregado.")

model = AutoPeftModelForCausalLM.from_pretrained(
    model_name,
    device_map="cpu",
    torch_dtype=torch.float32,
    low_cpu_mem_usage=True,
)
model.eval()
log.info("✅ Modelo carregado e em modo eval.")

try:
    log.info("✅ Modelo compilado com torch.compile.")
except Exception as e:
    log.warning(f"⚠️ torch.compile indisponível: {e}")

# -------- FASTAPI --------
app = FastAPI(title="News Filter JSON API")

@app.get("/")
def read_root():
    return {"message": "News Filter JSON API is running!", "docs": "/docs"}

# -------- INFERÊNCIA --------
def infer_filter(title, content):
    prompt = f"""Analyze the news title and content, and return the filters in JSON format with the defined fields.

Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.

Title: "{title}"
Content: "{content}"
"""

    log.info(f"🧠 Iniciando inferência para notícia:\n📰 Title: {title}\n📝 Content: {content[:100]}...")
    start_time = time.time()

    inputs = tokenizer(
        prompt,
        return_tensors="pt",
        truncation=True,
        max_length=512,
        padding=False,
    )
    input_ids = inputs.input_ids.to("cpu")

    with torch.no_grad():
        outputs = model.generate(
            input_ids=input_ids,
            max_new_tokens=100,
            temperature=1.0,
            do_sample=True,
            top_p=0.9,
            num_beams=1,
            early_stopping=True,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.eos_token_id,
        )

    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
    generated = decoded[len(prompt):].strip()

    log.info("📤 Resposta bruta decodificada:")
    log.info(generated)

    match = re.search(r"\{.*\}", generated, re.DOTALL)
    if match:
        json_result = match.group(0)
        duration = time.time() - start_time
        log.info(f"✅ JSON extraído com sucesso em {duration:.2f}s")
        return json_result
    else:
        log.warning("⚠️ Não foi possível extrair JSON.")
        return "⚠️ Failed to extract JSON. Output:\n" + generated

# -------- ENDPOINT --------
@app.get("/filter")
def get_filter(
    title: str = Query(..., description="Title of the news"),
    content: str = Query(..., description="Content of the news")
):
    try:
        json_output = infer_filter(title, content)
        import json
        return json.loads(json_output)
    except json.JSONDecodeError:
        log.error("❌ Erro ao fazer parse do JSON retornado.")
        return {"raw_output": json_output}
    except Exception as e:
        log.exception("❌ Erro inesperado durante a inferência:")
        raise HTTPException(status_code=422, detail=str(e))