Update app.py
Browse files
app.py
CHANGED
@@ -7,18 +7,14 @@ from transformers import AutoTokenizer
|
|
7 |
from peft import AutoPeftModelForCausalLM
|
8 |
|
9 |
# -------- LOGGING CONFIG --------
|
10 |
-
logging.basicConfig(
|
11 |
-
level=logging.INFO,
|
12 |
-
format="%(asctime)s [%(levelname)s] %(message)s",
|
13 |
-
)
|
14 |
log = logging.getLogger("news-filter")
|
15 |
|
16 |
-
# --------
|
17 |
model_name = "habulaj/filter"
|
18 |
-
log.info("🚀
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
log.info("✅ Tokenizer carregado.")
|
22 |
|
23 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
24 |
model_name,
|
@@ -27,21 +23,22 @@ model = AutoPeftModelForCausalLM.from_pretrained(
|
|
27 |
low_cpu_mem_usage=True,
|
28 |
)
|
29 |
model.eval()
|
30 |
-
log.info("✅ Modelo carregado
|
31 |
|
32 |
try:
|
|
|
33 |
log.info("✅ Modelo compilado com torch.compile.")
|
34 |
except Exception as e:
|
35 |
-
log.warning(f"⚠️ torch.compile
|
36 |
|
37 |
-
# -------- FASTAPI --------
|
38 |
app = FastAPI(title="News Filter JSON API")
|
39 |
|
40 |
@app.get("/")
|
41 |
def read_root():
|
42 |
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
|
43 |
|
44 |
-
# --------
|
45 |
def infer_filter(title, content):
|
46 |
prompt = f"""Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
47 |
|
@@ -51,27 +48,30 @@ Title: "{title}"
|
|
51 |
Content: "{content}"
|
52 |
"""
|
53 |
|
54 |
-
log.info(f"🧠
|
55 |
start_time = time.time()
|
56 |
|
|
|
57 |
inputs = tokenizer(
|
58 |
prompt,
|
59 |
return_tensors="pt",
|
60 |
truncation=True,
|
61 |
max_length=512,
|
62 |
-
padding=
|
63 |
)
|
64 |
input_ids = inputs.input_ids.to("cpu")
|
|
|
65 |
|
66 |
with torch.no_grad():
|
67 |
outputs = model.generate(
|
68 |
input_ids=input_ids,
|
|
|
69 |
max_new_tokens=100,
|
70 |
temperature=1.0,
|
71 |
-
do_sample=
|
72 |
-
|
|
|
73 |
num_beams=1,
|
74 |
-
early_stopping=True,
|
75 |
eos_token_id=tokenizer.eos_token_id,
|
76 |
pad_token_id=tokenizer.eos_token_id,
|
77 |
)
|
@@ -79,32 +79,32 @@ Content: "{content}"
|
|
79 |
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
80 |
generated = decoded[len(prompt):].strip()
|
81 |
|
82 |
-
log.info("📤
|
83 |
log.info(generated)
|
84 |
|
85 |
match = re.search(r"\{.*\}", generated, re.DOTALL)
|
86 |
if match:
|
87 |
-
json_result = match.group(0)
|
88 |
duration = time.time() - start_time
|
89 |
-
|
|
|
90 |
return json_result
|
91 |
else:
|
92 |
-
log.warning("⚠️
|
93 |
return "⚠️ Failed to extract JSON. Output:\n" + generated
|
94 |
|
95 |
-
# --------
|
96 |
@app.get("/filter")
|
97 |
def get_filter(
|
98 |
-
title: str = Query(..., description="
|
99 |
-
content: str = Query(..., description="
|
100 |
):
|
101 |
try:
|
102 |
json_output = infer_filter(title, content)
|
103 |
import json
|
104 |
return json.loads(json_output)
|
105 |
except json.JSONDecodeError:
|
106 |
-
log.error("❌ Erro ao fazer parse do JSON
|
107 |
return {"raw_output": json_output}
|
108 |
except Exception as e:
|
109 |
-
log.exception("❌ Erro inesperado
|
110 |
raise HTTPException(status_code=422, detail=str(e))
|
|
|
7 |
from peft import AutoPeftModelForCausalLM
|
8 |
|
9 |
# -------- LOGGING CONFIG --------
|
10 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
|
|
|
|
|
|
11 |
log = logging.getLogger("news-filter")
|
12 |
|
13 |
+
# -------- LOAD MODEL --------
|
14 |
model_name = "habulaj/filter"
|
15 |
+
log.info("🚀 Carregando modelo e tokenizer...")
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
18 |
|
19 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
20 |
model_name,
|
|
|
23 |
low_cpu_mem_usage=True,
|
24 |
)
|
25 |
model.eval()
|
26 |
+
log.info("✅ Modelo carregado (eval mode).")
|
27 |
|
28 |
try:
|
29 |
+
model = torch.compile(model, mode="reduce-overhead")
|
30 |
log.info("✅ Modelo compilado com torch.compile.")
|
31 |
except Exception as e:
|
32 |
+
log.warning(f"⚠️ torch.compile não disponível: {e}")
|
33 |
|
34 |
+
# -------- FASTAPI INIT --------
|
35 |
app = FastAPI(title="News Filter JSON API")
|
36 |
|
37 |
@app.get("/")
|
38 |
def read_root():
|
39 |
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
|
40 |
|
41 |
+
# -------- INFERENCE --------
|
42 |
def infer_filter(title, content):
|
43 |
prompt = f"""Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
44 |
|
|
|
48 |
Content: "{content}"
|
49 |
"""
|
50 |
|
51 |
+
log.info(f"🧠 Inferência iniciada para: {title}")
|
52 |
start_time = time.time()
|
53 |
|
54 |
+
# Tokenização + attention mask
|
55 |
inputs = tokenizer(
|
56 |
prompt,
|
57 |
return_tensors="pt",
|
58 |
truncation=True,
|
59 |
max_length=512,
|
60 |
+
padding=True,
|
61 |
)
|
62 |
input_ids = inputs.input_ids.to("cpu")
|
63 |
+
attention_mask = inputs.attention_mask.to("cpu")
|
64 |
|
65 |
with torch.no_grad():
|
66 |
outputs = model.generate(
|
67 |
input_ids=input_ids,
|
68 |
+
attention_mask=attention_mask,
|
69 |
max_new_tokens=100,
|
70 |
temperature=1.0,
|
71 |
+
do_sample=False, # Greedy decoding
|
72 |
+
top_k=50, # Razoável para limitar
|
73 |
+
no_repeat_ngram_size=2,
|
74 |
num_beams=1,
|
|
|
75 |
eos_token_id=tokenizer.eos_token_id,
|
76 |
pad_token_id=tokenizer.eos_token_id,
|
77 |
)
|
|
|
79 |
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
80 |
generated = decoded[len(prompt):].strip()
|
81 |
|
82 |
+
log.info("📤 Resultado gerado:")
|
83 |
log.info(generated)
|
84 |
|
85 |
match = re.search(r"\{.*\}", generated, re.DOTALL)
|
86 |
if match:
|
|
|
87 |
duration = time.time() - start_time
|
88 |
+
json_result = match.group(0)
|
89 |
+
log.info(f"✅ JSON extraído em {duration:.2f}s")
|
90 |
return json_result
|
91 |
else:
|
92 |
+
log.warning("⚠️ Falha ao extrair JSON.")
|
93 |
return "⚠️ Failed to extract JSON. Output:\n" + generated
|
94 |
|
95 |
+
# -------- API --------
|
96 |
@app.get("/filter")
|
97 |
def get_filter(
|
98 |
+
title: str = Query(..., description="News title"),
|
99 |
+
content: str = Query(..., description="News content")
|
100 |
):
|
101 |
try:
|
102 |
json_output = infer_filter(title, content)
|
103 |
import json
|
104 |
return json.loads(json_output)
|
105 |
except json.JSONDecodeError:
|
106 |
+
log.error("❌ Erro ao fazer parse do JSON.")
|
107 |
return {"raw_output": json_output}
|
108 |
except Exception as e:
|
109 |
+
log.exception("❌ Erro inesperado:")
|
110 |
raise HTTPException(status_code=422, detail=str(e))
|