Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,14 @@ import re
|
|
4 |
import time
|
5 |
import logging
|
6 |
import os
|
7 |
-
from transformers import AutoTokenizer, GenerationConfig
|
8 |
-
from peft import AutoPeftModelForCausalLM
|
9 |
import gc
|
10 |
import json
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# --------
|
13 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
14 |
os.environ["OMP_NUM_THREADS"] = "2"
|
15 |
os.environ["MKL_NUM_THREADS"] = "2"
|
@@ -20,43 +22,37 @@ torch.set_num_interop_threads(1)
|
|
20 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
21 |
log = logging.getLogger("news-filter")
|
22 |
|
23 |
-
# -------- MODELO
|
24 |
-
model_name = "habulaj/
|
25 |
log.info("🚀 Carregando modelo e tokenizer...")
|
26 |
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True
|
|
|
|
|
28 |
if tokenizer.pad_token is None:
|
29 |
tokenizer.pad_token = tokenizer.eos_token
|
30 |
|
31 |
-
# Aplica chat template
|
32 |
-
def get_chat_template(tokenizer, chat_template="llama-3.1"):
|
33 |
-
tokenizer.chat_template = chat_template
|
34 |
-
return tokenizer
|
35 |
-
|
36 |
-
tokenizer = get_chat_template(tokenizer, chat_template="llama-3.1")
|
37 |
-
|
38 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
39 |
model_name,
|
40 |
device_map="cpu",
|
41 |
torch_dtype=torch.bfloat16,
|
42 |
low_cpu_mem_usage=True,
|
43 |
-
use_cache=True,
|
44 |
trust_remote_code=True
|
45 |
)
|
|
|
46 |
model.eval()
|
47 |
-
log.info("✅ Modelo carregado
|
48 |
|
49 |
-
# -------- CONFIG DE GERAÇÃO --------
|
50 |
generation_config = GenerationConfig(
|
51 |
max_new_tokens=128,
|
52 |
-
temperature=1.
|
53 |
-
|
54 |
-
|
55 |
use_cache=True,
|
56 |
eos_token_id=tokenizer.eos_token_id,
|
57 |
pad_token_id=tokenizer.eos_token_id,
|
58 |
repetition_penalty=1.1,
|
59 |
-
|
60 |
)
|
61 |
|
62 |
# -------- FASTAPI --------
|
@@ -66,12 +62,34 @@ app = FastAPI(title="News Filter JSON API")
|
|
66 |
def read_root():
|
67 |
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
|
68 |
|
69 |
-
|
70 |
-
def
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
75 |
messages = [
|
76 |
{
|
77 |
"role": "user",
|
@@ -85,7 +103,21 @@ Content: "Lucasfilm confirmed a new Star Wars movie set to release in 2026, dire
|
|
85 |
},
|
86 |
{
|
87 |
"role": "assistant",
|
88 |
-
"content": '{ "death_related": false, "relevance": "high", "global_interest": true, "entity_type": "movie", "entity_name": "Star Wars", "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
},
|
90 |
{
|
91 |
"role": "user",
|
@@ -99,74 +131,33 @@ Content: "{content}"
|
|
99 |
}
|
100 |
]
|
101 |
|
102 |
-
|
|
|
|
|
103 |
inputs = tokenizer.apply_chat_template(
|
104 |
messages,
|
105 |
tokenize=True,
|
106 |
add_generation_prompt=True,
|
107 |
-
return_tensors="pt"
|
108 |
).to("cpu")
|
109 |
|
110 |
with torch.no_grad(), torch.inference_mode():
|
111 |
outputs = model.generate(
|
112 |
input_ids=inputs,
|
113 |
generation_config=generation_config,
|
114 |
-
return_dict_in_generate=False
|
115 |
)
|
116 |
|
117 |
-
# Remove o prompt da saída
|
118 |
prompt_text = tokenizer.decode(inputs[0], skip_special_tokens=True)
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
json_result = extract_json(generated_only)
|
123 |
|
|
|
124 |
duration = time.time() - start_time
|
125 |
log.info(f"✅ JSON extraído em {duration:.2f}s")
|
126 |
-
|
127 |
-
|
128 |
-
# Limpeza
|
129 |
-
del outputs, inputs
|
130 |
-
gc.collect()
|
131 |
-
|
132 |
-
return json_result
|
133 |
|
134 |
def extract_json(text):
|
135 |
-
match = re.search(r'\{
|
136 |
if match:
|
137 |
-
|
138 |
-
|
139 |
-
json_str = re.sub(r"'\s*:\s*'([^']*)'", r'": "\1"', json_str)
|
140 |
-
json_str = re.sub(r"'", '"', json_str)
|
141 |
-
json_str = re.sub(r"\bTrue\b", "true", json_str)
|
142 |
-
json_str = re.sub(r"\bFalse\b", "false", json_str)
|
143 |
-
return json_str.strip()
|
144 |
-
return text.strip()
|
145 |
-
|
146 |
-
# -------- ENDPOINT --------
|
147 |
-
@app.get("/filter")
|
148 |
-
def get_filter(
|
149 |
-
title: str = Query(..., description="News title"),
|
150 |
-
content: str = Query(..., description="News content")
|
151 |
-
):
|
152 |
-
try:
|
153 |
-
json_output = infer_filter(title, content)
|
154 |
-
try:
|
155 |
-
parsed = json.loads(json_output)
|
156 |
-
return {"result": parsed}
|
157 |
-
except json.JSONDecodeError:
|
158 |
-
log.error("❌ JSON inválido ao fazer parse.")
|
159 |
-
return {"result": json_output, "warning": "Raw JSON string returned due to parse error"}
|
160 |
-
except Exception as e:
|
161 |
-
log.exception("❌ Erro inesperado:")
|
162 |
-
raise HTTPException(status_code=500, detail="Erro interno durante a inferência.")
|
163 |
-
|
164 |
-
# -------- WARMUP --------
|
165 |
-
@app.on_event("startup")
|
166 |
-
async def warmup():
|
167 |
-
log.info("🔥 Warmup iniciado...")
|
168 |
-
try:
|
169 |
-
infer_filter("Test title", "Test content")
|
170 |
-
log.info("✅ Warmup concluído.")
|
171 |
-
except Exception as e:
|
172 |
-
log.warning(f"⚠️ Warmup falhou: {e}")
|
|
|
4 |
import time
|
5 |
import logging
|
6 |
import os
|
|
|
|
|
7 |
import gc
|
8 |
import json
|
9 |
+
from transformers import AutoTokenizer, GenerationConfig
|
10 |
+
from peft import AutoPeftModelForCausalLM
|
11 |
+
from unsloth.chat_templates import get_chat_template
|
12 |
+
from unsloth import FastLanguageModel
|
13 |
|
14 |
+
# -------- CONFIGURAÇÕES DE OTIMIZAÇÃO --------
|
15 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
16 |
os.environ["OMP_NUM_THREADS"] = "2"
|
17 |
os.environ["MKL_NUM_THREADS"] = "2"
|
|
|
22 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
23 |
log = logging.getLogger("news-filter")
|
24 |
|
25 |
+
# -------- MODELO --------
|
26 |
+
model_name = "habulaj/filterinstruct3b"
|
27 |
log.info("🚀 Carregando modelo e tokenizer...")
|
28 |
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
30 |
+
tokenizer = get_chat_template(tokenizer, chat_template="llama-3.1")
|
31 |
+
|
32 |
if tokenizer.pad_token is None:
|
33 |
tokenizer.pad_token = tokenizer.eos_token
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
36 |
model_name,
|
37 |
device_map="cpu",
|
38 |
torch_dtype=torch.bfloat16,
|
39 |
low_cpu_mem_usage=True,
|
|
|
40 |
trust_remote_code=True
|
41 |
)
|
42 |
+
FastLanguageModel.for_inference(model)
|
43 |
model.eval()
|
44 |
+
log.info("✅ Modelo carregado (modo eval).")
|
45 |
|
|
|
46 |
generation_config = GenerationConfig(
|
47 |
max_new_tokens=128,
|
48 |
+
temperature=1.0,
|
49 |
+
do_sample=False,
|
50 |
+
num_beams=1,
|
51 |
use_cache=True,
|
52 |
eos_token_id=tokenizer.eos_token_id,
|
53 |
pad_token_id=tokenizer.eos_token_id,
|
54 |
repetition_penalty=1.1,
|
55 |
+
length_penalty=1.0
|
56 |
)
|
57 |
|
58 |
# -------- FASTAPI --------
|
|
|
62 |
def read_root():
|
63 |
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
|
64 |
|
65 |
+
@app.get("/filter")
|
66 |
+
def get_filter(
|
67 |
+
title: str = Query(..., description="News title"),
|
68 |
+
content: str = Query(..., description="News content")
|
69 |
+
):
|
70 |
+
try:
|
71 |
+
result = infer_filter(title, content)
|
72 |
+
try:
|
73 |
+
return {"result": json.loads(result)}
|
74 |
+
except json.JSONDecodeError:
|
75 |
+
return {"result": result, "warning": "Returned as string due to JSON parsing error"}
|
76 |
+
except HTTPException as he:
|
77 |
+
raise he
|
78 |
+
except Exception as e:
|
79 |
+
log.exception("❌ Erro inesperado:")
|
80 |
+
raise HTTPException(status_code=500, detail="Internal server error during inference.")
|
81 |
+
|
82 |
+
@app.on_event("startup")
|
83 |
+
async def warmup():
|
84 |
+
log.info("🔥 Executando warmup...")
|
85 |
+
try:
|
86 |
+
infer_filter("Test title", "Test content")
|
87 |
+
log.info("✅ Warmup concluído.")
|
88 |
+
except Exception as e:
|
89 |
+
log.warning(f"⚠️ Warmup falhou: {e}")
|
90 |
|
91 |
+
# -------- INFERÊNCIA --------
|
92 |
+
def infer_filter(title, content):
|
93 |
messages = [
|
94 |
{
|
95 |
"role": "user",
|
|
|
103 |
},
|
104 |
{
|
105 |
"role": "assistant",
|
106 |
+
"content": '{ "death_related": false, "relevance": "high", "global_interest": true, "entity_type": "movie", "entity_name": "Star Wars", "breaking_news": true, "has_video_content": false }'
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"role": "user",
|
110 |
+
"content": """Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
111 |
+
|
112 |
+
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
|
113 |
+
|
114 |
+
Title: "Legendary Musician Carlos Mendes Dies at 78"
|
115 |
+
Content: "Carlos Mendes, the internationally acclaimed Brazilian guitarist and composer known for blending traditional bossa nova with modern jazz, has died at the age of 78."
|
116 |
+
"""
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"role": "assistant",
|
120 |
+
"content": '{ "death_related": true, "relevance": "high", "global_interest": true, "entity_type": "person", "entity_name": "Carlos Mendes", "breaking_news": true, "has_video_content": false }'
|
121 |
},
|
122 |
{
|
123 |
"role": "user",
|
|
|
131 |
}
|
132 |
]
|
133 |
|
134 |
+
log.info(f"🧠 Inferência iniciada para: {title}")
|
135 |
+
start_time = time.time()
|
136 |
+
|
137 |
inputs = tokenizer.apply_chat_template(
|
138 |
messages,
|
139 |
tokenize=True,
|
140 |
add_generation_prompt=True,
|
141 |
+
return_tensors="pt",
|
142 |
).to("cpu")
|
143 |
|
144 |
with torch.no_grad(), torch.inference_mode():
|
145 |
outputs = model.generate(
|
146 |
input_ids=inputs,
|
147 |
generation_config=generation_config,
|
|
|
148 |
)
|
149 |
|
|
|
150 |
prompt_text = tokenizer.decode(inputs[0], skip_special_tokens=True)
|
151 |
+
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
152 |
+
generated = full_output[len(prompt_text):].strip()
|
|
|
|
|
153 |
|
154 |
+
json_str = extract_json(generated)
|
155 |
duration = time.time() - start_time
|
156 |
log.info(f"✅ JSON extraído em {duration:.2f}s")
|
157 |
+
return json_str
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
def extract_json(text):
|
160 |
+
match = re.search(r'\{.*?\}', text, flags=re.DOTALL)
|
161 |
if match:
|
162 |
+
return match.group(0)
|
163 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|