Spaces:
Sleeping
Sleeping
File size: 11,599 Bytes
9112884 7440293 9112884 7440293 029e04b b6db17e 9112884 7440293 029e04b 7440293 029e04b b6db17e 029e04b 7440293 029e04b 7440293 59f6d1a 029e04b 7440293 029e04b b6db17e 029e04b b6db17e 029e04b b6db17e 029e04b b6db17e 029e04b 59f6d1a c1b201d 029e04b 59f6d1a 7440293 fffe646 029e04b b6db17e 7440293 9112884 029e04b 7440293 029e04b 59f6d1a 029e04b b6db17e 029e04b 59f6d1a 029e04b 59f6d1a b6db17e 59f6d1a b6db17e 59f6d1a 7440293 b6db17e 7440293 029e04b b6db17e 029e04b 7440293 9112884 029e04b 9112884 029e04b 9112884 7440293 9112884 7440293 029e04b b6db17e 029e04b 59f6d1a 9112884 029e04b b6db17e 029e04b 9112884 029e04b 59f6d1a 7440293 029e04b b6db17e 7440293 029e04b b6db17e 7440293 9112884 029e04b 9112884 029e04b 9112884 7440293 029e04b 7440293 9112884 029e04b 9112884 029e04b 9112884 029e04b 9112884 b6db17e 9112884 029e04b 9112884 b6db17e 9112884 029e04b 59f6d1a 029e04b 59f6d1a 029e04b 59f6d1a 029e04b 9112884 029e04b 9112884 029e04b 9112884 b6db17e 9112884 b6db17e 9112884 029e04b 7440293 b6db17e 029e04b 9112884 029e04b b6db17e 9112884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, GenerationConfig
import torch
import re
import json
import time
import logging
import os
import gc
from typing import Dict, Any, Optional, List, Tuple
import psutil
from contextlib import contextmanager
num_cores = psutil.cpu_count(logical=False)
num_threads = min(4, num_cores)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OMP_NUM_THREADS"] = str(num_threads)
os.environ["MKL_NUM_THREADS"] = str(num_threads)
os.environ["OPENBLAS_NUM_THREADS"] = str(num_threads)
os.environ["VECLIB_MAXIMUM_THREADS"] = str(num_threads)
os.environ["NUMEXPR_NUM_THREADS"] = str(num_threads)
torch.set_num_threads(num_threads)
torch.set_num_interop_threads(1)
torch.backends.mkl.enabled = True
torch.backends.mkldnn.enabled = True
torch.backends.quantized.engine = 'qnnpack'
torch.cuda.empty_cache = lambda: None
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
log = logging.getLogger("news-filter-optimized")
device = "cpu"
torch.set_default_device(device)
@contextmanager
def memory_efficient_context():
try:
gc.collect()
yield
finally:
gc.collect()
class OptimizedTokenizerWrapper:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self._template_cache = {}
def apply_chat_template(self, messages, **kwargs):
content = messages[0]['content'] if messages else ""
key = hash(content[:100])
if key not in self._template_cache:
result = self.tokenizer.apply_chat_template(messages, **kwargs)
if len(self._template_cache) > 100:
self._template_cache.clear()
self._template_cache[key] = result
return self._template_cache[key]
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
def __getattr__(self, name):
return getattr(self.tokenizer, name)
print("🚀 Carregando modelo...")
log.info("🚀 Carregando modelo...")
model_config = {
"device_map": device,
"torch_dtype": torch.float16,
"low_cpu_mem_usage": True,
"use_cache": True,
"trust_remote_code": True,
"attn_implementation": "eager",
}
model = AutoPeftModelForCausalLM.from_pretrained(
"habulaj/filterinstruct180",
**model_config
)
tokenizer = AutoTokenizer.from_pretrained(
"habulaj/filterinstruct180",
use_fast=True,
padding_side="left",
model_max_length=1024,
clean_up_tokenization_spaces=False,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer = OptimizedTokenizerWrapper(tokenizer)
model.eval()
for param in model.parameters():
param.requires_grad = False
try:
model = torch.compile(model, mode="reduce-overhead")
log.info("✅ Modelo compilado")
except Exception as e:
log.warning(f"⚠️ Torch compile não disponível: {e}")
if hasattr(model, 'fuse_linear_layers'):
model.fuse_linear_layers()
log.info("✅ Modelo carregado")
tokenizer.tokenizer.chat_template = """{% for message in messages %}{% if message['role'] == 'user' %}{% if loop.first %}<|begin_of_text|><|start_header_id|>user<|end_header_id|>
{{ message['content'] }}<|eot_id|>{% else %}<|start_header_id|>user<|end_header_id|>
{{ message['content'] }}<|eot_id|>{% endif %}{% elif message['role'] == 'assistant' %}<|start_header_id|>assistant<|end_header_id|>
{{ message['content'] }}<|eot_id|>{% endif %}{% endfor %}{% if add_generation_prompt %}<|start_header_id|>assistant<|end_header_id|>
{% endif %}"""
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.8,
do_sample=False,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
length_penalty=1.0,
num_beams=1,
early_stopping=True,
)
def extract_json_optimized(text: str) -> str:
if not hasattr(extract_json_optimized, 'pattern'):
extract_json_optimized.pattern = re.compile(r'\{.*?\}', re.DOTALL)
match = extract_json_optimized.pattern.search(text)
return match.group(0) if match else text
def preprocess_input_optimized(title: str, content: str) -> List[Dict[str, str]]:
max_title_length = 100
max_content_length = 500
title = title[:max_title_length] if len(title) > max_title_length else title
content = content[:max_content_length] if len(content) > max_content_length else content
return [{
"role": "user",
"content": f"""Analyze the news title and content, and return the filters in JSON format with the defined fields.
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
Title: "{title}"
Content: "{content}"
"""
}]
def analyze_news_optimized(title: str, content: str) -> str:
try:
with memory_efficient_context():
start_time = time.time()
messages = preprocess_input_optimized(title, content)
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
padding=False,
truncation=True,
max_length=1024,
)
with torch.no_grad(), torch.inference_mode():
with torch.autocast(device_type='cpu', dtype=torch.float16):
outputs = model.generate(
inputs,
generation_config=generation_config,
num_return_sequences=1,
output_scores=False,
output_hidden_states=False,
output_attentions=False,
return_dict_in_generate=False,
use_cache=True,
do_sample=False,
)
generated_tokens = outputs[0][inputs.shape[1]:]
generated_text = tokenizer.decode(
generated_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
json_result = extract_json_optimized(generated_text)
duration = time.time() - start_time
log.info(f"✅ Análise concluída em {duration:.2f}s")
del outputs, inputs, generated_tokens
try:
parsed_json = json.loads(json_result)
return json.dumps(parsed_json, indent=2, ensure_ascii=False)
except json.JSONDecodeError:
return json_result
except Exception as e:
log.exception("❌ Erro durante análise:")
return f"Erro durante a análise: {str(e)}"
def warmup_optimized():
log.info("🔥 Executando warmup...")
try:
for i in range(3):
result = analyze_news_optimized(f"Test title {i}", f"Test content {i}")
log.info(f"Warmup {i+1}/3 concluído")
gc.collect()
log.info("✅ Warmup concluído")
except Exception as e:
log.warning(f"⚠️ Warmup falhou: {e}")
def create_optimized_interface():
with gr.Blocks(
title="Analisador de Notícias - Ultra Otimizado",
theme=gr.themes.Monochrome(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.performance-info {
background: #f8f9fa;
border-left: 4px solid #007bff;
padding: 15px;
margin: 10px 0;
}
"""
) as demo:
gr.Markdown("# 🚀 Analisador de Notícias - Ultra Otimizado")
with gr.Row():
with gr.Column(scale=1):
title_input = gr.Textbox(
label="Título da Notícia",
placeholder="Ex: Legendary Musician Carlos Mendes Dies at 78",
max_lines=3
)
content_input = gr.Textbox(
label="Conteúdo da Notícia",
placeholder="Ex: Carlos Mendes, the internationally acclaimed Brazilian guitarist...",
max_lines=6
)
analyze_btn = gr.Button("⚡ Analisar Notícia", variant="primary")
with gr.Row():
example_btn1 = gr.Button("📻 Exemplo 1", size="sm")
example_btn2 = gr.Button("⚽ Exemplo 2", size="sm")
example_btn3 = gr.Button("💼 Exemplo 3", size="sm")
with gr.Column(scale=1):
output = gr.Textbox(
label="Resultado JSON",
lines=15,
max_lines=20,
show_copy_button=True
)
status = gr.Textbox(
label="Status",
value="⚡ Pronto para análise",
interactive=False
)
def analyze_with_status(title: str, content: str) -> Tuple[str, str]:
if not title.strip() or not content.strip():
return "❌ Preencha todos os campos", "Erro: Campos obrigatórios não preenchidos"
try:
start_time = time.time()
result = analyze_news_optimized(title, content)
duration = time.time() - start_time
return f"✅ Análise concluída em {duration:.2f}s", result
except Exception as e:
return f"❌ Erro: {str(e)}", f"Erro: {str(e)}"
examples = [
("Legendary Musician Carlos Mendes Dies at 78", "Carlos Mendes, the internationally acclaimed Brazilian guitarist and composer known for blending traditional bossa nova with modern jazz, has died at the age of 78."),
("Brazil Defeats Argentina 2-1 in Copa America Final", "In a thrilling match at the Maracana Stadium, Brazil secured victory over Argentina with goals from Neymar and Vinicius Jr. The match was watched by over 200 million viewers worldwide."),
("Tech Giant Announces Major Layoffs Affecting 10,000 Employees", "The technology company announced significant workforce reductions citing economic uncertainty and changing market conditions. The layoffs will affect multiple departments across different regions.")
]
analyze_btn.click(
fn=analyze_with_status,
inputs=[title_input, content_input],
outputs=[status, output]
)
example_btn1.click(
fn=lambda: examples[0],
outputs=[title_input, content_input]
)
example_btn2.click(
fn=lambda: examples[1],
outputs=[title_input, content_input]
)
example_btn3.click(
fn=lambda: examples[2],
outputs=[title_input, content_input]
)
return demo
if __name__ == "__main__":
warmup_optimized()
print("🚀 Iniciando interface...")
demo = create_optimized_interface()
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
max_threads=num_threads,
show_api=False,
) |