Spaces:
Sleeping
Sleeping
File size: 6,361 Bytes
9112884 7440293 9112884 7440293 9112884 1e03fe2 7440293 1e03fe2 7440293 029e04b 7440293 1e03fe2 7440293 59f6d1a 1e03fe2 029e04b 59f6d1a d09c7ec 1e03fe2 59f6d1a 7440293 500c0f9 029e04b 1e03fe2 7440293 9112884 7440293 1e03fe2 b6db17e 1e03fe2 b6db17e 1e03fe2 59f6d1a 1e03fe2 b6db17e 1e03fe2 b6db17e 1e03fe2 59f6d1a 7440293 1e03fe2 7440293 9112884 1e03fe2 9112884 1e03fe2 1950ea9 9381d89 1950ea9 9112884 7440293 1e03fe2 029e04b 1e03fe2 029e04b 9112884 1e03fe2 59f6d1a 7440293 1e03fe2 b6db17e 7440293 1e03fe2 7440293 9112884 1e03fe2 9112884 1e03fe2 9112884 1e03fe2 9112884 1e03fe2 9112884 1e03fe2 9112884 b6db17e 1e03fe2 b6db17e 9112884 1e03fe2 59f6d1a 1e03fe2 59f6d1a 1e03fe2 59f6d1a 029e04b 9112884 1e03fe2 9112884 1e03fe2 9112884 1e03fe2 9112884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, GenerationConfig
import torch
import re
import json
import time
import logging
import os
import gc
# Configurações de otimização
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OMP_NUM_THREADS"] = "2"
os.environ["MKL_NUM_THREADS"] = "2"
torch.set_num_threads(2)
torch.set_num_interop_threads(1)
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
log = logging.getLogger("news-filter-gradio")
device = "cpu"
torch.set_default_device(device)
# Carrega modelo e tokenizer
print("🚀 Carregando modelo e tokenizer...")
log.info("🚀 Carregando modelo e tokenizer...")
model = AutoPeftModelForCausalLM.from_pretrained(
"habulaj/filterinstruct2",
device_map=device,
torch_dtype=torch.bfloat16,
load_in_4bit=False,
low_cpu_mem_usage=True,
use_cache=True,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"habulaj/filterinstruct2",
use_fast=True,
padding_side="left"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.eval()
log.info("✅ Modelo carregado (eval mode).")
tokenizer.chat_template = """{% for message in messages %}
{%- if message['role'] == 'user' %}
{%- if loop.first %}
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
{{ message['content'] }}<|eot_id|>
{%- else %}
<|start_header_id|>user<|end_header_id|>
{{ message['content'] }}<|eot_id|>
{%- endif %}
{%- elif message['role'] == 'assistant' %}
<|start_header_id|>assistant<|end_header_id|>
{{ message['content'] }}<|eot_id|>
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
<|start_header_id|>assistant<|end_header_id|>
{%- endif %}"""
generation_config = GenerationConfig(
max_new_tokens=200,
temperature=1.0,
min_p=0.1,
do_sample=True,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
def extract_json(text):
match = re.search(r'\{.*\}', text, flags=re.DOTALL)
if match:
return match.group(0)
return text
def analyze_news(title, content):
try:
log.info(f"🧠 Inferência iniciada para: {title}")
start_time = time.time()
messages = [
{
"role": "user",
"content": f"""Analyze the news title and content, and return the filters in JSON format with the defined fields.
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
Title: "{title}"
Content: "{content}"
"""
}
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
)
with torch.no_grad(), torch.inference_mode():
outputs = model.generate(
input_ids=inputs,
generation_config=generation_config,
num_return_sequences=1,
output_scores=False,
return_dict_in_generate=False
)
prompt_text = tokenizer.decode(inputs[0], skip_special_tokens=False)
decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=False)
generated_only = decoded_text[len(prompt_text):].strip()
json_result = extract_json(generated_only)
duration = time.time() - start_time
log.info(f"✅ JSON extraído em {duration:.2f}s")
del outputs, inputs
gc.collect()
try:
parsed_json = json.loads(json_result)
return json.dumps(parsed_json, indent=2, ensure_ascii=False)
except json.JSONDecodeError:
return json_result
except Exception as e:
log.exception("❌ Erro inesperado:")
return f"Erro durante a análise: {str(e)}"
def warmup_model():
log.info("🔥 Executando warmup...")
try:
analyze_news("Test title", "Test content")
log.info("✅ Warmup concluído.")
except Exception as e:
log.warning(f"⚠️ Warmup falhou: {e}")
def create_interface():
with gr.Blocks(title="Analisador de Notícias", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 📰 Analisador de Notícias")
with gr.Row():
with gr.Column(scale=1):
title_input = gr.Textbox(
label="Título da Notícia",
placeholder="Digite o título da notícia...",
lines=2
)
content_input = gr.Textbox(
label="Conteúdo da Notícia",
placeholder="Digite o conteúdo da notícia...",
lines=6
)
analyze_btn = gr.Button("🔍 Analisar Notícia", variant="primary")
with gr.Column(scale=1):
output = gr.Textbox(
label="Resultado JSON",
lines=15,
max_lines=20,
show_copy_button=True
)
status = gr.Textbox(
label="Status",
value="Aguardando entrada...",
interactive=False
)
def update_status_and_analyze(title, content):
if not title.strip() or not content.strip():
return "❌ Preencha título e conteúdo.", "Erro: Campos obrigatórios."
try:
result = analyze_news(title, content)
return f"✅ Análise concluída!", result
except Exception as e:
return f"❌ Erro: {str(e)}", f"Erro: {str(e)}"
analyze_btn.click(
fn=update_status_and_analyze,
inputs=[title_input, content_input],
outputs=[status, output]
)
return demo
if __name__ == "__main__":
warmup_model()
print("🚀 Iniciando interface Gradio...")
demo = create_interface()
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |