Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from datasets import load_dataset | |
| import networkx as nx | |
| dataset = load_dataset("roneneldan/TinyStories") | |
| st.write(dataset['train'][10]['text']) | |
| #------------------------------------------------------------- | |
| #------------------------------------------------------------- | |
| from sentence_transformers import SentenceTransformer, util | |
| model = SentenceTransformer('all-MiniLM-L6-v2') | |
| # Sentences from the data set | |
| #sentences = [item['text'] for item in dataset['train'][:10]] | |
| sentences = [dataset['train'][0],dataset['train'][1],dataset['train'][2]] | |
| #Compute embedding | |
| embeddings = model.encode(sentences, convert_to_tensor=True) | |
| #Compute cosine-similarities | |
| cosine_scores = util.cos_sim(embeddings, embeddings) | |
| #Output the pairs with their score | |
| for i in range(len(sentences)): | |
| for j in range(i): | |
| st.write("{} \t\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], cosine_scores[i][j])) | |
| G = nx.from_numpy_array(cosine_scores) | |
| #------------------------------------------------------------- | |
| #------------------------------------------------------------- | |
| # ego_graph.py | |
| # An example of how to plot a node's ego network | |
| # (egonet). This indirectly showcases slightly more involved | |
| # interoperability between streamlit-agraph and networkx. | |
| # An egonet can be # created from (almost) any network (graph), | |
| # and exemplifies the # concept of a subnetwork (subgraph): | |
| # A node's egonet is the (sub)network comprised of the focal node | |
| # and all the nodes to whom it is adjacent. The edges included | |
| # in the egonet are those nodes are both included in the aforementioned | |
| # nodes. | |
| # Use the following command to launch the app | |
| # streamlit run <path-to-script>.py | |
| # standard library dependencies | |
| from operator import itemgetter | |
| # external dependencies | |
| import networkx as nx | |
| from streamlit_agraph import agraph, Node, Edge, Config | |
| # First create a graph using the Barabasi-Albert model | |
| n = 2000 | |
| m = 2 | |
| G = nx.generators.barabasi_albert_graph(n, m, seed=2023) | |
| # Then find the node with the largest degree; | |
| # This node's egonet will be the focus of this example. | |
| node_and_degree = G.degree() | |
| most_connected_node = sorted(G.degree, key=lambda x: x[1], reverse=True)[0] | |
| degree = G.degree(most_connected_node) | |
| # Create egonet for the focal node | |
| hub_ego = nx.ego_graph(G, most_connected_node[0]) | |
| # Now create the equivalent Node and Edge lists | |
| nodes = [Node(id=i, label=str(i), size=20) for i in hub_ego.nodes] | |
| edges = [Edge(source=i, target=j, type="CURVE_SMOOTH") for (i,j) in G.edges | |
| if i in hub_ego.nodes and j in hub_ego.nodes] | |
| config = Config(width=500, | |
| height=500, | |
| directed=True, | |
| nodeHighlightBehavior=False, | |
| highlightColor="#F7A7A6", # or "blue" | |
| collapsible=False, | |
| node={'labelProperty':'label'}, | |
| # **kwargs e.g. node_size=1000 or node_color="blue" | |
| ) | |
| return_value = agraph(nodes=nodes, | |
| edges=edges, | |
| config=config) |