import streamlit as st import pandas as pd from sentence_transformers import SentenceTransformer model = SentenceTransformer('paraphrase-MiniLM-L6-v2') input_sentence = st.text_input('Movie title', 'Life of Brian') #st.write('The current movie title is', title) #Sentences we want to encode. Example: sentence = ['This framework generates embeddings for each input sentence'] #Sentences are encoded by calling model.encode() embedding = model.encode(input_sentence) x = st.slider('Select a value') #embedding = model.encode(input_sentence) #st.write(x, 'squared is', x * x, 'embedding', embedding[0][0]) st.write('The embedding of', input_sentence, 'at position',x,'is',embedding[0][int(x)]) uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: #read csv df1=pd.read_csv(uploaded_file)