Spaces:
Running
Running
File size: 17,376 Bytes
f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 d17e7ef f99ad65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#
import pdfplumber # Library to extract text and tables from PDF files
import pytesseract # OCR tool to extract text from images
import docx # Library to read Microsoft Word (.docx) files
import zipfile # To handle zipped archives, used here to access embedded images in Word files
import io # Provides tools for handling byte streams, used to open images from bytes
import pandas as pd # Data analysis library, used here to handle tables from Excel and other files
import warnings # Used to suppress warnings during Excel file reading
import re # Regular expressions for text cleaning
from openpyxl import load_workbook # Excel file reading library, used for .xlsx files
from pptx import Presentation # Library to read Microsoft PowerPoint files
from PIL import Image, ImageEnhance, ImageFilter # Image processing libraries for OCR preprocessing
from pathlib import Path # Object-oriented filesystem paths
def clean_text(text):
"""
Clean and normalize extracted text to improve readability and remove noise.
This function performs several cleaning steps:
- Removes characters that are not letters, digits, spaces, or common punctuation.
- Removes isolated single letters which are often OCR errors or noise.
- Strips whitespace from each line and removes empty lines.
- Joins cleaned lines back into a single string separated by newlines.
Args:
text (str): Raw extracted text from any source.
Returns:
str: Cleaned and normalized text ready for display or further processing.
"""
# Remove all characters except letters, digits, spaces, and common punctuation marks
text = re.sub(r'[^a-zA-Z0-9\s.,?!():;\'"-]', '', text)
# Remove single isolated letters which are likely errors or noise from OCR
text = re.sub(r'\b[a-zA-Z]\b', '', text)
# Split text into lines, strip whitespace, and remove empty lines
lines = [line.strip() for line in text.splitlines() if line.strip()]
# Join cleaned lines with newline characters
return "\n".join(lines)
def format_table(df, max_rows=10):
"""
Convert a pandas DataFrame into a clean, readable string representation of a table.
This function:
- Removes rows and columns that are completely empty to reduce clutter.
- Replaces any NaN values with empty strings for cleaner output.
- Limits the output to a maximum number of rows for brevity.
- Adds a note if there are more rows than displayed.
Args:
df (pandas.DataFrame): The table data to format.
max_rows (int): Maximum number of rows to display from the table.
Returns:
str: Formatted string representation of the table or empty string if no data.
"""
if df.empty:
return ""
# Remove rows and columns where all values are NaN to clean the table
df_clean = df.dropna(axis=0, how='all').dropna(axis=1, how='all')
# Replace remaining NaN values with empty strings for better readability
df_clean = df_clean.fillna('')
if df_clean.empty:
return ""
# Select only the first max_rows rows for display
display_df = df_clean.head(max_rows)
# Convert DataFrame to string without row indices
table_str = display_df.to_string(index=False)
# Append a message if there are more rows than displayed
if len(df_clean) > max_rows:
table_str += f"\n... ({len(df_clean) - max_rows} more rows)"
return table_str
def preprocess_image(img):
"""
Enhance an image to improve OCR accuracy by applying several preprocessing steps.
The preprocessing includes:
- Converting the image to grayscale to simplify colors.
- Increasing contrast to make text stand out more.
- Applying a median filter to reduce noise.
- Binarizing the image by thresholding to black and white.
Args:
img (PIL.Image.Image): The original image to preprocess.
Returns:
PIL.Image.Image: The processed image ready for OCR.
If an error occurs during processing, returns the original image.
"""
try:
# Convert image to grayscale mode
img = img.convert("L")
# Enhance contrast by a factor of 2 to make text clearer
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(2)
# Apply median filter to reduce noise and smooth the image
img = img.filter(ImageFilter.MedianFilter())
# Convert image to black and white using a threshold of 140
img = img.point(lambda x: 0 if x < 140 else 255, '1')
return img
except Exception:
# In case of any error, return the original image without changes
return img
def ocr_image(img):
"""
Extract text from an image using OCR after preprocessing to improve results.
This function:
- Preprocesses the image to enhance text visibility.
- Uses pytesseract with page segmentation mode 6 (assumes a single uniform block of text).
- Cleans the extracted text using the clean_text function.
Args:
img (PIL.Image.Image): The image from which to extract text.
Returns:
str: The cleaned OCR-extracted text. Returns empty string if OCR fails.
"""
try:
# Preprocess image to improve OCR quality
img = preprocess_image(img)
# Perform OCR using pytesseract with English language and specified config
text = pytesseract.image_to_string(img, lang='eng', config='--psm 6')
# Clean the OCR output to remove noise and normalize text
text = clean_text(text)
return text
except Exception:
# Return empty string if OCR fails for any reason
return ""
def extract_pdf_content(fp):
"""
Extract text and tables from a PDF file, including OCR on embedded images.
This function:
- Opens the PDF file and iterates through each page.
- Extracts and cleans text from each page.
- Performs OCR on images embedded in pages to extract any text within images.
- Extracts tables from pages and formats them as readable text.
- Handles exceptions by appending error messages to the content.
Args:
fp (str or Path): File path to the PDF document.
Returns:
str: Combined extracted text, OCR results, and formatted tables from the PDF.
"""
content = ""
try:
with pdfplumber.open(fp) as pdf:
for i, page in enumerate(pdf.pages, 1):
# Extract text from the current page, defaulting to empty string if None
text = page.extract_text() or ""
# Clean extracted text and add page header
content += f"Page {i} Text:\n{clean_text(text)}\n\n"
# If there are images on the page, perform OCR on each
if page.images:
# Create an image object of the page with 300 dpi resolution for cropping
img_obj = page.to_image(resolution=300)
for img in page.images:
# Define bounding box coordinates for the image on the page
bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
# Crop the image from the page image
cropped = img_obj.original.crop(bbox)
# Perform OCR on the cropped image
ocr_text = ocr_image(cropped)
if ocr_text:
# Append OCR text with page and image reference
content += f"[OCR Text from image on page {i}]:\n{ocr_text}\n\n"
# Extract tables from the page
tables = page.extract_tables()
for idx, table in enumerate(tables, 1):
if table:
# Convert table list to DataFrame using first row as header
df = pd.DataFrame(table[1:], columns=table[0])
# Format and append the table text
content += f"Table {idx} on page {i}:\n{format_table(df)}\n\n"
except Exception as e:
# Append error message if PDF reading fails
content += f"\n[Error reading PDF {fp}: {e}]"
# Return the combined content with whitespace trimmed
return content.strip()
def extract_docx_content(fp):
"""
Extract text, tables, and OCR text from images embedded in a Microsoft Word (.docx) file.
This function:
- Reads paragraphs and tables from the document.
- Cleans and formats extracted text and tables.
- Opens the .docx file as a zip archive to extract embedded images.
- Performs OCR on embedded images to extract any text they contain.
- Handles exceptions and appends error messages if reading fails.
Args:
fp (str or Path): File path to the Word document.
Returns:
str: Combined extracted paragraphs, tables, and OCR text from embedded images.
"""
content = ""
try:
# Load the Word document
doc = docx.Document(fp)
# Extract and clean all non-empty paragraphs
paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
if paragraphs:
content += "Paragraphs:\n" + "\n".join(paragraphs) + "\n\n"
# Extract tables from the document
tables = []
for table in doc.tables:
rows = []
for row in table.rows:
# Extract and clean text from each cell in the row
cells = [cell.text.strip() for cell in row.cells]
rows.append(cells)
if rows:
# Convert rows to DataFrame using first row as header
df = pd.DataFrame(rows[1:], columns=rows[0])
tables.append(df)
# Format and append each extracted table
for i, df in enumerate(tables, 1):
content += f"Table {i}:\n{format_table(df)}\n\n"
# Open the .docx file as a zip archive to access embedded media files
with zipfile.ZipFile(fp) as z:
for file in z.namelist():
# Look for images inside the word/media directory
if file.startswith("word/media/"):
data = z.read(file)
try:
# Open image from bytes
img = Image.open(io.BytesIO(data))
# Perform OCR on the image
ocr_text = ocr_image(img)
if ocr_text:
# Append OCR text extracted from embedded image
content += f"[OCR Text from embedded image]:\n{ocr_text}\n\n"
except Exception:
# Ignore errors in image processing to continue extraction
pass
except Exception as e:
# Append error message if Word document reading fails
content += f"\n[Error reading Microsoft Word {fp}: {e}]"
# Return combined content trimmed of extra whitespace
return content.strip()
def extract_excel_content(fp):
"""
Extract readable table content from Microsoft Excel files (.xlsx, .xls).
This function:
- Reads all sheets in the Excel file.
- Converts each sheet to a formatted table string.
- Suppresses warnings during reading to avoid clutter.
- Does not attempt to extract images to avoid errors.
- Handles exceptions by appending error messages.
Args:
fp (str or Path): File path to the Excel workbook.
Returns:
str: Combined formatted tables from all sheets in the workbook.
"""
content = ""
try:
# Suppress warnings such as openpyxl deprecation or data type warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Read all sheets into a dictionary of DataFrames using openpyxl engine
sheets = pd.read_excel(fp, sheet_name=None, engine='openpyxl')
# Iterate over each sheet and format its content
for sheet_name, df in sheets.items():
content += f"Sheet: {sheet_name}\n"
content += format_table(df) + "\n\n"
except Exception as e:
# Append error message if Excel reading fails
content += f"\n[Error reading Microsoft Excel {fp}: {e}]"
# Return combined sheet contents trimmed of whitespace
return content.strip()
def extract_pptx_content(fp):
"""
Extract text, tables, and OCR text from images in Microsoft PowerPoint (.pptx) files.
This function:
- Reads each slide in the presentation.
- Extracts text from shapes and tables on each slide.
- Performs OCR on images embedded in shapes.
- Handles exceptions and appends error messages if reading fails.
Args:
fp (str or Path): File path to the PowerPoint presentation.
Returns:
str: Combined extracted text, tables, and OCR results from all slides.
"""
content = ""
try:
# Load the PowerPoint presentation
prs = Presentation(fp)
# Iterate through each slide by index starting at 1
for i, slide in enumerate(prs.slides, 1):
slide_texts = []
# Iterate through all shapes on the slide
for shape in slide.shapes:
# Extract and clean text from shapes that have text attribute
if hasattr(shape, "text") and shape.text.strip():
slide_texts.append(shape.text.strip())
# Check if the shape is a picture (shape_type 13) with an image
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
try:
# Open image from the shape's binary blob data
img = Image.open(io.BytesIO(shape.image.blob))
# Perform OCR on the image
ocr_text = ocr_image(img)
if ocr_text:
# Append OCR text extracted from the image
slide_texts.append(f"[OCR Text from image]:\n{ocr_text}")
except Exception:
# Ignore errors in image OCR to continue processing
pass
# Add slide text or note if no text found
if slide_texts:
content += f"Slide {i} Text:\n" + "\n".join(slide_texts) + "\n\n"
else:
content += f"Slide {i} Text:\nNo text found on this slide.\n\n"
# Extract tables from shapes that have tables
for shape in slide.shapes:
if shape.has_table:
rows = []
table = shape.table
# Extract text from each cell in the table rows
for row in table.rows:
cells = [cell.text.strip() for cell in row.cells]
rows.append(cells)
if rows:
# Convert rows to DataFrame using first row as header
df = pd.DataFrame(rows[1:], columns=rows[0])
# Format and append the table text
content += f"Table on slide {i}:\n{format_table(df)}\n\n"
except Exception as e:
# Append error message if PowerPoint reading fails
content += f"\n[Error reading Microsoft PowerPoint {fp}: {e}]"
# Return combined slide content trimmed of whitespace
return content.strip()
def extract_file_content(fp):
"""
Determine the file type based on its extension and extract text content accordingly.
This function supports:
- PDF files with text, tables, and OCR on images.
- Microsoft Word documents with paragraphs, tables, and OCR on embedded images.
- Microsoft Excel workbooks with formatted sheet tables.
- Microsoft PowerPoint presentations with slide text, tables, and OCR on images.
- Other file types are attempted to be read as plain UTF-8 text.
Args:
fp (str or Path): File path to the document to extract content from.
Returns:
str: Extracted and cleaned text content from the file, or an error message.
"""
# Get the file extension in lowercase to identify file type
ext = Path(fp).suffix.lower()
if ext == ".pdf":
# Extract content from PDF files
return extract_pdf_content(fp)
elif ext in [".doc", ".docx"]:
# Extract content from Word documents
return extract_docx_content(fp)
elif ext in [".xlsx", ".xls"]:
# Extract content from Excel workbooks
return extract_excel_content(fp)
elif ext in [".ppt", ".pptx"]:
# Extract content from PowerPoint presentations
return extract_pptx_content(fp)
else:
try:
# Attempt to read unknown file types as plain UTF-8 text
text = Path(fp).read_text(encoding="utf-8")
# Clean the extracted text before returning
return clean_text(text)
except Exception as e:
# Return error message if reading fails
return f"\n[Error reading file {fp}: {e}]"
|