File size: 8,065 Bytes
29232b4
446e6d6
 
29232b4
 
5456854
 
 
 
 
e29b7bd
60f9e8e
 
 
 
 
 
 
f4fd6dc
e0729bd
92220a2
083bf02
 
92220a2
 
 
 
 
 
 
 
60f9e8e
 
af424b9
 
 
5456854
7d6f26e
 
5456854
4901fb7
5456854
 
 
 
 
 
 
 
 
4901fb7
 
f4fd6dc
 
 
 
 
e29b7bd
f4fd6dc
5456854
 
1c78115
5456854
af424b9
 
 
 
 
60f9e8e
 
af424b9
 
 
 
 
 
 
 
 
60f9e8e
af424b9
 
 
60f9e8e
af424b9
 
 
60f9e8e
 
af424b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5456854
1c78115
 
 
 
 
 
 
 
 
 
 
 
 
 
e0729bd
 
 
 
 
 
 
e29b7bd
7d6f26e
68ce31f
f4fd6dc
 
5456854
 
 
 
 
e0729bd
 
 
 
 
 
 
 
 
5456854
e29b7bd
af424b9
 
62027e8
 
af424b9
 
1c78115
af424b9
 
 
 
 
e29b7bd
62027e8
 
1c78115
7fd4a34
62027e8
5456854
 
e29b7bd
5456854
eb0a349
5456854
e29b7bd
5456854
af424b9
 
1d7bea0
 
60f9e8e
e29b7bd
 
5456854
eb0a349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: CC-BY-NC-SA-4.0
#

import gradio as gr
import requests
import json
import os
import random
import time
import pytesseract
import pdfplumber
import docx
import pandas as pd
import pptx
import fitz
import io
import uuid
import concurrent.futures

from openai import OpenAI

from optillm.cot_reflection import cot_reflection
from optillm.leap import leap
from optillm.plansearch import plansearch
from optillm.reread import re2_approach
from optillm.rto import round_trip_optimization
from optillm.self_consistency import advanced_self_consistency_approach
from optillm.z3_solver import Z3SymPySolverSystem

from pathlib import Path
from PIL import Image
from pptx import Presentation

os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")

LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]

AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}

MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))

META_TAGS = os.getenv("META_TAGS")

ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS"))

class SessionWithID(requests.Session):
    def __init__(self):
        super().__init__()
        self.session_id = str(uuid.uuid4())

def create_session():
    return SessionWithID()

def get_model_key(display_name):
    return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0])

def extract_file_content(file_path):
    ext = Path(file_path).suffix.lower()
    content = ""
    try:
        if ext == ".pdf":
            with pdfplumber.open(file_path) as pdf:
                for page in pdf.pages:
                    text = page.extract_text()
                    if text:
                        content += text + "\n"
                    tables = page.extract_tables()
                    if tables:
                        for table in tables:
                            table_str = "\n".join([", ".join(row) for row in table if row])
                            content += "\n" + table_str + "\n"
        elif ext in [".doc", ".docx"]:
            doc = docx.Document(file_path)
            for para in doc.paragraphs:
                content += para.text + "\n"
        elif ext in [".xlsx", ".xls"]:
            df = pd.read_excel(file_path)
            content += df.to_csv(index=False)
        elif ext in [".ppt", ".pptx"]:
            prs = Presentation(file_path)
            for slide in prs.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text") and shape.text:
                        content += shape.text + "\n"
        elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]:
            try:
                pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
                image = Image.open(file_path)
                text = pytesseract.image_to_string(image)
                content += text + "\n"
            except Exception as e:
                content += f"{e}\n"
        else:
            content = Path(file_path).read_text(encoding="utf-8")
    except Exception as e:
        content = f"{file_path}: {e}"
    return content.strip()

def process_ai_response(ai_text):
    try:
        result = round_trip_optimization(ai_text)
        result = re2_approach(result)
        result = cot_reflection(result)
        result = advanced_self_consistency_approach(result)
        result = plansearch(result)
        result = leap(result)
        solver = Z3SymPySolverSystem()
        result = solver.solve(result)
        return result
    except Exception:
        return ai_text

def fetch_response(host, provider_key, selected_model, messages, model_config, session_id):
    client = OpenAI(base_url=host, api_key=provider_key)
    data = {"model": selected_model, "messages": messages, **model_config}
    response = client.chat.completions.create(extra_body={"optillm_approach": "rto|re2|cot_reflection|self_consistency|plansearch|leap|z3|bon|moa|mcts|mcp|router|privacy|executecode|json", "session_id": session_id}, **data)
    ai_text = response.choices[0].message.content if response.choices and response.choices[0].message and response.choices[0].message.content else RESPONSES["RESPONSE_2"]
    return process_ai_response(ai_text)

def chat_with_model(history, user_input, selected_model_display, sess):
    if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
        return RESPONSES["RESPONSE_3"]
    if not hasattr(sess, "session_id"):
        sess.session_id = str(uuid.uuid4())
    selected_model = get_model_key(selected_model_display)
    model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
    messages = [{"role": "user", "content": user} for user, _ in history]
    messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
    messages.append({"role": "user", "content": user_input})
    futures = []
    with concurrent.futures.ThreadPoolExecutor(max_workers=len(LINUX_SERVER_HOSTS)) as executor:
        for host, key in zip(LINUX_SERVER_HOSTS, LINUX_SERVER_PROVIDER_KEYS):
            futures.append(executor.submit(fetch_response, host, key, selected_model, messages, model_config, sess.session_id))
        done, not_done = concurrent.futures.wait(futures, return_when=concurrent.futures.FIRST_COMPLETED)
        for future in not_done:
            future.cancel()
        result = list(done)[0].result() if done else RESPONSES["RESPONSE_2"]
    return result

def respond(multi_input, history, selected_model_display, sess):
    message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])}
    if not message["text"] and not message["files"]:
        yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
        return
    combined_input = ""
    for file_item in message["files"]:
        file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item
        file_content = extract_file_content(file_path)
        combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n"
    if message["text"]:
        combined_input += message["text"]
    history.append([combined_input, ""])
    ai_response = chat_with_model(history, combined_input, selected_model_display, sess)
    history[-1][1] = ""
    for character in ai_response:
        history[-1][1] += str(character)
        time.sleep(0.0009)
        yield history, gr.MultimodalTextbox(value=None, interactive=True), sess

def change_model(new_model_display):
    return [], create_session(), new_model_display

with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
    user_history = gr.State([])
    user_session = gr.State(create_session())
    selected_model = gr.State(MODEL_CHOICES[0])
    chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
    model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
    with gr.Row():
        msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)

    model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model])
    msg.submit(fn=respond, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session])

jarvis.launch(show_api=False, max_file_size="1mb")