ai / jarvis.py
hadadrjt's picture
ai: Hanlde file upload issue.
933e48c
raw
history blame
8.91 kB
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#
import asyncio
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid
from PIL import Image
from pathlib import Path
from pptx import Presentation
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA")
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]
LINUX_SERVER_HOSTS_MARKED = set()
LINUX_SERVER_HOSTS_ATTEMPTS = {}
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(",")))
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 8)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None
META_TAGS = os.getenv("META_TAGS")
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
ACTIVE_CANDIDATE = None
class SessionWithID(requests.Session):
def __init__(self):
super().__init__()
self.session_id = str(uuid.uuid4())
def create_session():
return SessionWithID()
def get_available_items(items, marked):
a = [i for i in items if i not in marked]
random.shuffle(a)
return a
def marked_item(item, marked, attempts):
marked.add(item)
attempts[item] = attempts.get(item, 0) + 1
if attempts[item] >= 3:
def remove():
marked.discard(item)
attempts.pop(item, None)
threading.Timer(300, remove).start()
def get_model_key(display):
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)
def extract_file_content(fp):
ext = Path(fp).suffix.lower()
c = ""
try:
if ext == ".pdf":
with pdfplumber.open(fp) as pdf:
for p in pdf.pages:
t = p.extract_text() or ""
c += t + "\n"
elif ext in [".doc", ".docx"]:
d = docx.Document(fp)
for para in d.paragraphs:
c += para.text + "\n"
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(fp)
c += df.to_csv(index=False)
elif ext in [".ppt", ".pptx"]:
prs = Presentation(fp)
for s in prs.slides:
for sh in s.shapes:
if hasattr(sh, "text") and sh.text:
c += sh.text + "\n"
else:
c = Path(fp).read_text(encoding="utf-8")
except Exception as e:
c = f"{fp}: {e}"
return c.strip()
async def fetch_response_async(host, key, model, msgs, cfg, sid):
for t in [60, 80, 120, 240]:
try:
async with httpx.AsyncClient(timeout=t) as client:
r = await client.post(host, json={"model": model, "messages": msgs, **cfg, "session_id": sid}, headers={"Authorization": f"Bearer {key}"})
if r.status_code in LINUX_SERVER_ERRORS:
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return None
r.raise_for_status()
j = r.json()
if isinstance(j, dict) and j.get("choices"):
ch = j["choices"][0]
if ch.get("message") and isinstance(ch["message"].get("content"), str):
return ch["message"]["content"]
return None
except:
continue
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return None
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt):
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS):
return RESPONSES["RESPONSE_3"]
if not hasattr(sess, "session_id"):
sess.session_id = str(uuid.uuid4())
model_key = get_model_key(model_display)
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
msgs = [{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a]
if model_key == DEFAULT_MODEL_KEY and INTERNAL_TRAINING_DATA:
prompt = INTERNAL_TRAINING_DATA
else:
prompt = custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)
msgs.insert(0, {"role": "system", "content": prompt})
msgs.append({"role": "user", "content": user_input})
global ACTIVE_CANDIDATE
if ACTIVE_CANDIDATE:
res = await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], model_key, msgs, cfg, sess.session_id)
if res:
return res
ACTIVE_CANDIDATE = None
keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED)
hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS)
cands = [(h, k) for h in hosts for k in keys]
random.shuffle(cands)
for h, k in cands:
res = await fetch_response_async(h, k, model_key, msgs, cfg, sess.session_id)
if res:
ACTIVE_CANDIDATE = (h, k)
return res
return RESPONSES["RESPONSE_2"]
async def respond_async(multi, history, model_display, sess, custom_prompt):
msg = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
if not msg["text"] and not msg["files"]:
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
return
inp = ""
for f in msg["files"]:
if isinstance(f, dict):
fp = f.get("data", f.get("name", ""))
else:
fp = f
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
if msg["text"]:
inp += msg["text"]
history.append([inp, ""])
ai = await chat_with_model_async(history, inp, model_display, sess, custom_prompt)
history[-1][1] = ""
def to_str(d):
if isinstance(d, (str, int, float)):
return str(d)
if isinstance(d, bytes):
return d.decode("utf-8", errors="ignore")
if isinstance(d, (list, tuple)):
return "".join(map(to_str, d))
if isinstance(d, dict):
return json.dumps(d, ensure_ascii=False)
return repr(d)
for c in ai:
history[-1][1] += to_str(c)
await asyncio.sleep(0.0001)
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
def change_model(new):
visible = new != MODEL_CHOICES[0]
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT)
return [], create_session(), new, default, gr.update(value=default, visible=visible)
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
user_history = gr.State([])
user_session = gr.State(create_session())
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
custom_prompt_state = gr.State("")
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
with gr.Row():
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False):
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
system_prompt = gr.Textbox(label=AI_TYPES["AI_TYPE_7"], lines=2, interactive=True, visible=False)
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model, custom_prompt_state, system_prompt])
system_prompt.change(fn=lambda x: x, inputs=[system_prompt], outputs=[custom_prompt_state])
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, custom_prompt_state], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
jarvis.launch(max_file_size="1mb")