Spaces:
Running
Running
# | |
# SPDX-FileCopyrightText: Hadad <[email protected]> | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
import asyncio | |
import docx | |
import gradio as gr | |
import httpx | |
import json | |
import os | |
import pandas as pd | |
import pdfplumber | |
import pytesseract | |
import random | |
import requests | |
import threading | |
import uuid | |
import zipfile | |
import io | |
from PIL import Image | |
from pathlib import Path | |
from pptx import Presentation | |
from openpyxl import load_workbook | |
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") | |
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") | |
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA") | |
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}")) | |
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM") | |
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h] | |
LINUX_SERVER_HOSTS_MARKED = set() | |
LINUX_SERVER_HOSTS_ATTEMPTS = {} | |
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k] | |
LINUX_SERVER_PROVIDER_KEYS_MARKED = set() | |
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} | |
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(","))) | |
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 8)} | |
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} | |
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) | |
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) | |
MODEL_CHOICES = list(MODEL_MAPPING.values()) | |
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) | |
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None | |
META_TAGS = os.getenv("META_TAGS") | |
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]")) | |
ACTIVE_CANDIDATE = None | |
class SessionWithID(requests.Session): | |
def __init__(self): | |
super().__init__() | |
self.session_id = str(uuid.uuid4()) | |
def create_session(): | |
return SessionWithID() | |
def get_available_items(items, marked): | |
a = [i for i in items if i not in marked] | |
random.shuffle(a) | |
return a | |
def marked_item(item, marked, attempts): | |
marked.add(item) | |
attempts[item] = attempts.get(item, 0) + 1 | |
if attempts[item] >= 3: | |
def remove(): | |
marked.discard(item) | |
attempts.pop(item, None) | |
threading.Timer(300, remove).start() | |
def get_model_key(display): | |
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY) | |
def extract_pdf_content(fp): | |
content = "" | |
try: | |
with pdfplumber.open(fp) as pdf: | |
for page in pdf.pages: | |
text = page.extract_text() or "" | |
content += text + "\n" | |
if page.images: | |
img_obj = page.to_image(resolution=300) | |
for img in page.images: | |
bbox = (img["x0"], img["top"], img["x1"], img["bottom"]) | |
cropped = img_obj.original.crop(bbox) | |
ocr_text = pytesseract.image_to_string(cropped) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
tables = page.extract_tables() | |
for table in tables: | |
for row in table: | |
cells = [str(cell) for cell in row if cell is not None] | |
if cells: | |
content += "\t".join(cells) + "\n" | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_docx_content(fp): | |
content = "" | |
try: | |
doc = docx.Document(fp) | |
for para in doc.paragraphs: | |
content += para.text + "\n" | |
for table in doc.tables: | |
for row in table.rows: | |
cells = [cell.text for cell in row.cells] | |
content += "\t".join(cells) + "\n" | |
with zipfile.ZipFile(fp) as z: | |
for file in z.namelist(): | |
if file.startswith("word/media/"): | |
data = z.read(file) | |
try: | |
img = Image.open(io.BytesIO(data)) | |
ocr_text = pytesseract.image_to_string(img) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
except Exception: | |
pass | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_excel_content(fp): | |
content = "" | |
try: | |
sheets = pd.read_excel(fp, sheet_name=None) | |
for name, df in sheets.items(): | |
content += f"Sheet: {name}\n" | |
content += df.to_csv(index=False) + "\n" | |
wb = load_workbook(fp, data_only=True) | |
if wb._images: | |
for image in wb._images: | |
img = image.ref | |
if isinstance(img, bytes): | |
try: | |
pil_img = Image.open(io.BytesIO(img)) | |
ocr_text = pytesseract.image_to_string(pil_img) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
except Exception: | |
pass | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_pptx_content(fp): | |
content = "" | |
try: | |
prs = Presentation(fp) | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text") and shape.text: | |
content += shape.text + "\n" | |
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image: | |
try: | |
img = Image.open(io.BytesIO(shape.image.blob)) | |
ocr_text = pytesseract.image_to_string(img) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
except Exception: | |
pass | |
if slide.shapes: | |
for shape in slide.shapes: | |
if shape.has_table: | |
table = shape.table | |
for row in table.rows: | |
cells = [cell.text for cell in row.cells] | |
content += "\t".join(cells) + "\n" | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_file_content(fp): | |
ext = Path(fp).suffix.lower() | |
if ext == ".pdf": | |
return extract_pdf_content(fp) | |
elif ext in [".doc", ".docx"]: | |
return extract_docx_content(fp) | |
elif ext in [".xlsx", ".xls"]: | |
return extract_excel_content(fp) | |
elif ext in [".ppt", ".pptx"]: | |
return extract_pptx_content(fp) | |
else: | |
try: | |
return Path(fp).read_text(encoding="utf-8").strip() | |
except Exception as e: | |
return f"{fp}: {e}" | |
async def fetch_response_async(host, key, model, msgs, cfg, sid): | |
for t in [60, 80, 120, 240]: | |
try: | |
async with httpx.AsyncClient(timeout=t) as client: | |
r = await client.post(host, json={"model": model, "messages": msgs, **cfg, "session_id": sid}, headers={"Authorization": f"Bearer {key}"}) | |
if r.status_code in LINUX_SERVER_ERRORS: | |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) | |
return None | |
r.raise_for_status() | |
j = r.json() | |
if isinstance(j, dict) and j.get("choices"): | |
ch = j["choices"][0] | |
if ch.get("message") and isinstance(ch["message"].get("content"), str): | |
return ch["message"]["content"] | |
return None | |
except: | |
continue | |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) | |
return None | |
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt): | |
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS): | |
return RESPONSES["RESPONSE_3"] | |
if not hasattr(sess, "session_id"): | |
sess.session_id = str(uuid.uuid4()) | |
model_key = get_model_key(model_display) | |
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG) | |
msgs = [{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a] | |
if model_key == DEFAULT_MODEL_KEY and INTERNAL_TRAINING_DATA: | |
prompt = INTERNAL_TRAINING_DATA | |
else: | |
prompt = custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT) | |
msgs.insert(0, {"role": "system", "content": prompt}) | |
msgs.append({"role": "user", "content": user_input}) | |
global ACTIVE_CANDIDATE | |
if ACTIVE_CANDIDATE: | |
res = await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], model_key, msgs, cfg, sess.session_id) | |
if res: | |
return res | |
ACTIVE_CANDIDATE = None | |
keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) | |
hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS) | |
cands = [(h, k) for h in hosts for k in keys] | |
random.shuffle(cands) | |
for h, k in cands: | |
res = await fetch_response_async(h, k, model_key, msgs, cfg, sess.session_id) | |
if res: | |
ACTIVE_CANDIDATE = (h, k) | |
return res | |
return RESPONSES["RESPONSE_2"] | |
async def respond_async(multi, history, model_display, sess, custom_prompt): | |
msg = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])} | |
if not msg["text"] and not msg["files"]: | |
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess | |
return | |
inp = "" | |
for f in msg["files"]: | |
if isinstance(f, dict): | |
fp = f.get("data", f.get("name", "")) | |
else: | |
fp = f | |
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n" | |
if msg["text"]: | |
inp += msg["text"] | |
history.append([inp, ""]) | |
ai = await chat_with_model_async(history, inp, model_display, sess, custom_prompt) | |
history[-1][1] = "" | |
def to_str(d): | |
if isinstance(d, (str, int, float)): | |
return str(d) | |
if isinstance(d, bytes): | |
return d.decode("utf-8", errors="ignore") | |
if isinstance(d, (list, tuple)): | |
return "".join(map(to_str, d)) | |
if isinstance(d, dict): | |
return json.dumps(d, ensure_ascii=False) | |
return repr(d) | |
for c in ai: | |
history[-1][1] += to_str(c) | |
await asyncio.sleep(0.0001) | |
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess | |
def change_model(new): | |
visible = new != MODEL_CHOICES[0] | |
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT) | |
return [], create_session(), new, default, gr.update(value=default, visible=visible) | |
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: | |
user_history = gr.State([]) | |
user_session = gr.State(create_session()) | |
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "") | |
custom_prompt_state = gr.State("") | |
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) | |
with gr.Row(): | |
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) | |
with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False): | |
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) | |
system_prompt = gr.Textbox(label=AI_TYPES["AI_TYPE_7"], lines=2, interactive=True, visible=False) | |
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model, custom_prompt_state, system_prompt]) | |
system_prompt.change(fn=lambda x: x, inputs=[system_prompt], outputs=[custom_prompt_state]) | |
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, custom_prompt_state], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER) | |
jarvis.launch(max_file_size="1mb") | |