hadi272 commited on
Commit
93e0c72
·
verified ·
1 Parent(s): 102ef8a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -56
app.py CHANGED
@@ -1,64 +1,47 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
 
 
 
 
 
 
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
3
+ from langchain.chains import RetrievalQA
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.text_splitter import CharacterTextSplitter
7
+
8
+ # بارگذاری مدل و توکنایزر
9
+ model_name = "HooshvareLab/bert-fa-base-uncased"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
12
+
13
+ # متن اصلی (می‌توانید از فایل Word خوانده شود)
14
+ document_text = """
15
+ این یک متن نمونه است که به عنوان پایه‌ای برای پاسخ به سؤالات استفاده می‌شود.
16
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # تقسیم متن به قسمت‌های کوچکتر
19
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
20
+ texts = text_splitter.split_text(document_text)
21
 
22
+ # تبدیل متن به بردارهای معنایی
23
+ embeddings = SentenceTransformerEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2")
24
+ vectorstore = FAISS.from_texts(texts, embeddings)
 
 
 
 
 
25
 
26
+ # ایجاد زنجیره QA
27
+ qa_chain = RetrievalQA.from_chain_type(
28
+ llm=model,
29
+ chain_type="stuff",
30
+ retriever=vectorstore.as_retriever()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  )
32
 
33
+ # تعریف تابع پاسخ‌دهی
34
+ def chatbot_response(query):
35
+ answer = qa_chain.run(query)
36
+ return answer
37
+
38
+ # ایجاد رابط کاربری با Gradio
39
+ iface = gr.Interface(
40
+ fn=chatbot_response,
41
+ inputs="text",
42
+ outputs="text",
43
+ title="چت‌بات فارسی",
44
+ description="یک چت‌بات تعاملی که از محتوای فایل‌های Word استفاده می‌کند."
45
+ )
46
 
47
+ iface.launch()