Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	all static one folder
Browse files- app-controlnet.py +22 -8
- app-img2img.py +14 -5
- app-txt2img.py +10 -4
- img2img/tailwind.config.js +0 -0
- controlnet/index.html → static/controlnet.html +0 -0
- img2img/index.html → static/img2img.html +0 -0
- {controlnet → static}/tailwind.config.js +0 -0
- txt2img/index.html → static/txt2img.html +0 -0
- txt2img/tailwind.config.js +0 -0
    	
        app-controlnet.py
    CHANGED
    
    | @@ -6,15 +6,20 @@ from pydantic import BaseModel | |
| 6 |  | 
| 7 | 
             
            from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
         | 
| 8 | 
             
            from fastapi.middleware.cors import CORSMiddleware
         | 
| 9 | 
            -
            from fastapi.responses import  | 
| 10 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
             
            from diffusers import AutoencoderTiny, ControlNetModel
         | 
| 13 | 
             
            from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet
         | 
| 14 | 
             
            from compel import Compel
         | 
| 15 | 
             
            import torch
         | 
| 16 |  | 
| 17 | 
            -
            from canny_gpu import SobelOperator | 
|  | |
| 18 | 
             
            # from controlnet_aux import OpenposeDetector
         | 
| 19 | 
             
            # import cv2
         | 
| 20 |  | 
| @@ -35,7 +40,7 @@ import psutil | |
| 35 | 
             
            MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
         | 
| 36 | 
             
            TIMEOUT = float(os.environ.get("TIMEOUT", 0))
         | 
| 37 | 
             
            SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
         | 
| 38 | 
            -
            TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | 
| 39 | 
             
            WIDTH = 512
         | 
| 40 | 
             
            HEIGHT = 512
         | 
| 41 | 
             
            # disable tiny autoencoder for better quality speed tradeoff
         | 
| @@ -110,7 +115,11 @@ if TORCH_COMPILE: | |
| 110 | 
             
                pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
         | 
| 111 | 
             
                pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
         | 
| 112 |  | 
| 113 | 
            -
                pipe( | 
|  | |
|  | |
|  | |
|  | |
| 114 |  | 
| 115 |  | 
| 116 | 
             
            user_queue_map = {}
         | 
| @@ -132,12 +141,15 @@ class InputParams(BaseModel): | |
| 132 | 
             
                canny_high_threshold: float = 0.78
         | 
| 133 | 
             
                debug_canny: bool = False
         | 
| 134 |  | 
|  | |
| 135 | 
             
            def predict(
         | 
| 136 | 
             
                input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
         | 
| 137 | 
             
            ):
         | 
| 138 | 
             
                generator = torch.manual_seed(params.seed)
         | 
| 139 | 
            -
             | 
| 140 | 
            -
                control_image = canny_torch( | 
|  | |
|  | |
| 141 | 
             
                results = pipe(
         | 
| 142 | 
             
                    control_image=control_image,
         | 
| 143 | 
             
                    prompt_embeds=prompt_embeds,
         | 
| @@ -305,4 +317,6 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID): | |
| 305 | 
             
                    traceback.print_exc()
         | 
| 306 |  | 
| 307 |  | 
| 308 | 
            -
            app. | 
|  | |
|  | 
|  | |
| 6 |  | 
| 7 | 
             
            from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
         | 
| 8 | 
             
            from fastapi.middleware.cors import CORSMiddleware
         | 
| 9 | 
            +
            from fastapi.responses import (
         | 
| 10 | 
            +
                StreamingResponse,
         | 
| 11 | 
            +
                JSONResponse,
         | 
| 12 | 
            +
                HTMLResponse,
         | 
| 13 | 
            +
                FileResponse,
         | 
| 14 | 
            +
            )
         | 
| 15 |  | 
| 16 | 
             
            from diffusers import AutoencoderTiny, ControlNetModel
         | 
| 17 | 
             
            from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet
         | 
| 18 | 
             
            from compel import Compel
         | 
| 19 | 
             
            import torch
         | 
| 20 |  | 
| 21 | 
            +
            from canny_gpu import SobelOperator
         | 
| 22 | 
            +
             | 
| 23 | 
             
            # from controlnet_aux import OpenposeDetector
         | 
| 24 | 
             
            # import cv2
         | 
| 25 |  | 
|  | |
| 40 | 
             
            MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
         | 
| 41 | 
             
            TIMEOUT = float(os.environ.get("TIMEOUT", 0))
         | 
| 42 | 
             
            SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
         | 
| 43 | 
            +
            TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
         | 
| 44 | 
             
            WIDTH = 512
         | 
| 45 | 
             
            HEIGHT = 512
         | 
| 46 | 
             
            # disable tiny autoencoder for better quality speed tradeoff
         | 
|  | |
| 115 | 
             
                pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
         | 
| 116 | 
             
                pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
         | 
| 117 |  | 
| 118 | 
            +
                pipe(
         | 
| 119 | 
            +
                    prompt="warmup",
         | 
| 120 | 
            +
                    image=[Image.new("RGB", (768, 768))],
         | 
| 121 | 
            +
                    control_image=[Image.new("RGB", (768, 768))],
         | 
| 122 | 
            +
                )
         | 
| 123 |  | 
| 124 |  | 
| 125 | 
             
            user_queue_map = {}
         | 
|  | |
| 141 | 
             
                canny_high_threshold: float = 0.78
         | 
| 142 | 
             
                debug_canny: bool = False
         | 
| 143 |  | 
| 144 | 
            +
             | 
| 145 | 
             
            def predict(
         | 
| 146 | 
             
                input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
         | 
| 147 | 
             
            ):
         | 
| 148 | 
             
                generator = torch.manual_seed(params.seed)
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                control_image = canny_torch(
         | 
| 151 | 
            +
                    input_image, params.canny_low_threshold, params.canny_high_threshold
         | 
| 152 | 
            +
                )
         | 
| 153 | 
             
                results = pipe(
         | 
| 154 | 
             
                    control_image=control_image,
         | 
| 155 | 
             
                    prompt_embeds=prompt_embeds,
         | 
|  | |
| 317 | 
             
                    traceback.print_exc()
         | 
| 318 |  | 
| 319 |  | 
| 320 | 
            +
            @app.get("/", response_class=HTMLResponse)
         | 
| 321 | 
            +
            async def root():
         | 
| 322 | 
            +
                return FileResponse("./static/controlnet.html")
         | 
    	
        app-img2img.py
    CHANGED
    
    | @@ -6,8 +6,12 @@ from pydantic import BaseModel | |
| 6 |  | 
| 7 | 
             
            from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
         | 
| 8 | 
             
            from fastapi.middleware.cors import CORSMiddleware
         | 
| 9 | 
            -
            from fastapi.responses import  | 
| 10 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
             
            from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
         | 
| 13 | 
             
            from compel import Compel
         | 
| @@ -29,7 +33,7 @@ import psutil | |
| 29 | 
             
            MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
         | 
| 30 | 
             
            TIMEOUT = float(os.environ.get("TIMEOUT", 0))
         | 
| 31 | 
             
            SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
         | 
| 32 | 
            -
            TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | 
| 33 |  | 
| 34 | 
             
            WIDTH = 512
         | 
| 35 | 
             
            HEIGHT = 512
         | 
| @@ -102,7 +106,10 @@ class InputParams(BaseModel): | |
| 102 | 
             
                width: int = WIDTH
         | 
| 103 | 
             
                height: int = HEIGHT
         | 
| 104 |  | 
| 105 | 
            -
             | 
|  | |
|  | |
|  | |
| 106 | 
             
                generator = torch.manual_seed(params.seed)
         | 
| 107 | 
             
                results = pipe(
         | 
| 108 | 
             
                    prompt_embeds=prompt_embeds,
         | 
| @@ -259,4 +266,6 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID): | |
| 259 | 
             
                    traceback.print_exc()
         | 
| 260 |  | 
| 261 |  | 
| 262 | 
            -
            app. | 
|  | |
|  | 
|  | |
| 6 |  | 
| 7 | 
             
            from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
         | 
| 8 | 
             
            from fastapi.middleware.cors import CORSMiddleware
         | 
| 9 | 
            +
            from fastapi.responses import (
         | 
| 10 | 
            +
                StreamingResponse,
         | 
| 11 | 
            +
                JSONResponse,
         | 
| 12 | 
            +
                HTMLResponse,
         | 
| 13 | 
            +
                FileResponse,
         | 
| 14 | 
            +
            )
         | 
| 15 |  | 
| 16 | 
             
            from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
         | 
| 17 | 
             
            from compel import Compel
         | 
|  | |
| 33 | 
             
            MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
         | 
| 34 | 
             
            TIMEOUT = float(os.environ.get("TIMEOUT", 0))
         | 
| 35 | 
             
            SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
         | 
| 36 | 
            +
            TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
         | 
| 37 |  | 
| 38 | 
             
            WIDTH = 512
         | 
| 39 | 
             
            HEIGHT = 512
         | 
|  | |
| 106 | 
             
                width: int = WIDTH
         | 
| 107 | 
             
                height: int = HEIGHT
         | 
| 108 |  | 
| 109 | 
            +
             | 
| 110 | 
            +
            def predict(
         | 
| 111 | 
            +
                input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
         | 
| 112 | 
            +
            ):
         | 
| 113 | 
             
                generator = torch.manual_seed(params.seed)
         | 
| 114 | 
             
                results = pipe(
         | 
| 115 | 
             
                    prompt_embeds=prompt_embeds,
         | 
|  | |
| 266 | 
             
                    traceback.print_exc()
         | 
| 267 |  | 
| 268 |  | 
| 269 | 
            +
            @app.get("/", response_class=HTMLResponse)
         | 
| 270 | 
            +
            async def root():
         | 
| 271 | 
            +
                return FileResponse("./static/img2img.html")
         | 
    	
        app-txt2img.py
    CHANGED
    
    | @@ -6,8 +6,12 @@ from pydantic import BaseModel | |
| 6 |  | 
| 7 | 
             
            from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
         | 
| 8 | 
             
            from fastapi.middleware.cors import CORSMiddleware
         | 
| 9 | 
            -
            from fastapi.responses import  | 
| 10 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
             
            from diffusers import DiffusionPipeline, AutoencoderTiny
         | 
| 13 | 
             
            from compel import Compel
         | 
| @@ -30,7 +34,7 @@ import psutil | |
| 30 | 
             
            MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
         | 
| 31 | 
             
            TIMEOUT = float(os.environ.get("TIMEOUT", 0))
         | 
| 32 | 
             
            SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
         | 
| 33 | 
            -
            TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | 
| 34 |  | 
| 35 | 
             
            WIDTH = 768
         | 
| 36 | 
             
            HEIGHT = 768
         | 
| @@ -246,4 +250,6 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID): | |
| 246 | 
             
                    traceback.print_exc()
         | 
| 247 |  | 
| 248 |  | 
| 249 | 
            -
            app. | 
|  | |
|  | 
|  | |
| 6 |  | 
| 7 | 
             
            from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
         | 
| 8 | 
             
            from fastapi.middleware.cors import CORSMiddleware
         | 
| 9 | 
            +
            from fastapi.responses import (
         | 
| 10 | 
            +
                StreamingResponse,
         | 
| 11 | 
            +
                JSONResponse,
         | 
| 12 | 
            +
                HTMLResponse,
         | 
| 13 | 
            +
                FileResponse,
         | 
| 14 | 
            +
            )
         | 
| 15 |  | 
| 16 | 
             
            from diffusers import DiffusionPipeline, AutoencoderTiny
         | 
| 17 | 
             
            from compel import Compel
         | 
|  | |
| 34 | 
             
            MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
         | 
| 35 | 
             
            TIMEOUT = float(os.environ.get("TIMEOUT", 0))
         | 
| 36 | 
             
            SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
         | 
| 37 | 
            +
            TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
         | 
| 38 |  | 
| 39 | 
             
            WIDTH = 768
         | 
| 40 | 
             
            HEIGHT = 768
         | 
|  | |
| 250 | 
             
                    traceback.print_exc()
         | 
| 251 |  | 
| 252 |  | 
| 253 | 
            +
            @app.get("/", response_class=HTMLResponse)
         | 
| 254 | 
            +
            async def root():
         | 
| 255 | 
            +
                return FileResponse("./static/txt2img.html")
         | 
    	
        img2img/tailwind.config.js
    DELETED
    
    | 
            File without changes
         | 
    	
        controlnet/index.html → static/controlnet.html
    RENAMED
    
    | 
            File without changes
         | 
    	
        img2img/index.html → static/img2img.html
    RENAMED
    
    | 
            File without changes
         | 
    	
        {controlnet → static}/tailwind.config.js
    RENAMED
    
    | 
            File without changes
         | 
    	
        txt2img/index.html → static/txt2img.html
    RENAMED
    
    | 
            File without changes
         | 
    	
        txt2img/tailwind.config.js
    DELETED
    
    | 
            File without changes
         | 
 
			
