Commit
·
9cea6a9
1
Parent(s):
7cec736
Add example images and enable Gradio examples
Browse files- app.py +22 -6
- requirements.txt +3 -2
app.py
CHANGED
|
@@ -5,20 +5,22 @@ import numpy as np
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from celldetection import fetch_model, to_tensor
|
| 7 |
|
|
|
|
| 8 |
device = 'cpu'
|
| 9 |
model = fetch_model('ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c').to(device).eval()
|
| 10 |
|
|
|
|
| 11 |
def segment(image):
|
| 12 |
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
| 13 |
x = to_tensor(img_rgb, transpose=True, device=device, dtype=torch.float32)[None]
|
| 14 |
-
|
| 15 |
with torch.no_grad():
|
| 16 |
output = model(x)
|
| 17 |
-
|
| 18 |
contours = output['contours'][0]
|
| 19 |
original = (img_rgb * 255).astype(np.uint8).copy()
|
| 20 |
segmented = original.copy()
|
| 21 |
-
|
| 22 |
for contour in contours:
|
| 23 |
contour = np.array(contour.cpu(), dtype=np.int32)
|
| 24 |
cv2.drawContours(segmented, [contour], -1, (255, 0, 0), 2)
|
|
@@ -28,8 +30,22 @@ def segment(image):
|
|
| 28 |
canvas = np.zeros((h, w * 2 + gap, c), dtype=np.uint8)
|
| 29 |
canvas[:, :w, :] = original
|
| 30 |
canvas[:, w + gap:, :] = segmented
|
|
|
|
| 31 |
return cv2.cvtColor(canvas, cv2.COLOR_RGB2BGR)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from celldetection import fetch_model, to_tensor
|
| 7 |
|
| 8 |
+
# ✅ Load the model
|
| 9 |
device = 'cpu'
|
| 10 |
model = fetch_model('ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c').to(device).eval()
|
| 11 |
|
| 12 |
+
# ✅ Inference function
|
| 13 |
def segment(image):
|
| 14 |
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
| 15 |
x = to_tensor(img_rgb, transpose=True, device=device, dtype=torch.float32)[None]
|
| 16 |
+
|
| 17 |
with torch.no_grad():
|
| 18 |
output = model(x)
|
| 19 |
+
|
| 20 |
contours = output['contours'][0]
|
| 21 |
original = (img_rgb * 255).astype(np.uint8).copy()
|
| 22 |
segmented = original.copy()
|
| 23 |
+
|
| 24 |
for contour in contours:
|
| 25 |
contour = np.array(contour.cpu(), dtype=np.int32)
|
| 26 |
cv2.drawContours(segmented, [contour], -1, (255, 0, 0), 2)
|
|
|
|
| 30 |
canvas = np.zeros((h, w * 2 + gap, c), dtype=np.uint8)
|
| 31 |
canvas[:, :w, :] = original
|
| 32 |
canvas[:, w + gap:, :] = segmented
|
| 33 |
+
|
| 34 |
return cv2.cvtColor(canvas, cv2.COLOR_RGB2BGR)
|
| 35 |
|
| 36 |
+
# ✅ Example images list
|
| 37 |
+
examples = [
|
| 38 |
+
["examples/1.png"],
|
| 39 |
+
["examples/2.png"],
|
| 40 |
+
["examples/3.png"]
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
# ✅ Launch the Gradio interface
|
| 44 |
+
gr.Interface(
|
| 45 |
+
fn=segment,
|
| 46 |
+
inputs=gr.Image(type="numpy"),
|
| 47 |
+
outputs="image",
|
| 48 |
+
title="Cell Segmentation Demo (FZJ-INM1)",
|
| 49 |
+
description="Upload a microscopy image to see side-by-side segmentation.",
|
| 50 |
+
examples=examples
|
| 51 |
+
).launch()
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
gradio
|
| 2 |
-
|
| 3 |
celldetection
|
| 4 |
-
|
|
|
|
| 5 |
matplotlib
|
|
|
|
| 1 |
gradio
|
| 2 |
+
opencv-python
|
| 3 |
celldetection
|
| 4 |
+
torch
|
| 5 |
+
numpy
|
| 6 |
matplotlib
|