Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,11 +28,7 @@ def respond(
|
|
28 |
response = ""
|
29 |
|
30 |
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
|
@@ -40,95 +36,21 @@ def respond(
|
|
40 |
yield response
|
41 |
|
42 |
|
43 |
-
# Define the prompt template
|
44 |
-
prompt_template = """
|
45 |
-
Act as an expert in prompt engineering. Your task is to deeply understand what the user wants, and in return respond with a well-crafted prompt that, if fed to a separate AI, will get the exact result the user desires.
|
46 |
-
|
47 |
-
### Task:
|
48 |
-
{task}
|
49 |
-
|
50 |
-
### Context:
|
51 |
-
Make sure to include *any* context that is needed for the LLM to accurately, and reliably respond as needed.
|
52 |
-
|
53 |
-
### Response format:
|
54 |
-
Outline the ideal response format for this prompt.
|
55 |
-
|
56 |
-
### Important Notes:
|
57 |
-
- Instruct the model to list out its thoughts before giving an answer.
|
58 |
-
- If complex reasoning is required, include directions for the LLM to think step by step, and weigh all sides of the topic before settling on an answer.
|
59 |
-
- Where appropriate, make sure to utilize advanced prompt engineering techniques. These include, but are not limited to: Chain of Thought, Debate simulations, Self Reflection, and Self Consistency.
|
60 |
-
- Strictly use text, no code please
|
61 |
-
|
62 |
-
### Input:
|
63 |
-
[Type here what you want from the model]
|
64 |
"""
|
65 |
-
|
66 |
-
|
67 |
-
def respond_with_prompt(
|
68 |
-
task,
|
69 |
-
message,
|
70 |
-
history: list[tuple[str, str]],
|
71 |
-
system_message,
|
72 |
-
max_tokens,
|
73 |
-
temperature,
|
74 |
-
top_p,
|
75 |
-
):
|
76 |
-
# Insert the task into the prompt template
|
77 |
-
prompt = prompt_template.format(task=task)
|
78 |
-
|
79 |
-
messages = [{"role": "system", "content": system_message}]
|
80 |
-
|
81 |
-
for val in history:
|
82 |
-
if val[0]:
|
83 |
-
messages.append({"role": "user", "content": val[0]})
|
84 |
-
if val[1]:
|
85 |
-
messages.append({"role": "assistant", "content": val[1]})
|
86 |
-
|
87 |
-
messages.append({"role": "user", "content": message})
|
88 |
-
|
89 |
-
response = ""
|
90 |
-
|
91 |
-
for message in client.chat_completion(
|
92 |
-
messages,
|
93 |
-
prompt=prompt,
|
94 |
-
max_tokens=max_tokens,
|
95 |
-
stream=True,
|
96 |
-
temperature=temperature,
|
97 |
-
top_p=top_p,
|
98 |
-
):
|
99 |
-
token = message.choices[0].delta.content
|
100 |
-
|
101 |
-
response += token
|
102 |
-
yield response
|
103 |
-
|
104 |
-
|
105 |
-
# Define the ChatInterface with additional inputs
|
106 |
demo = gr.ChatInterface(
|
107 |
-
|
108 |
additional_inputs=[
|
|
|
|
|
|
|
109 |
gr.Textbox(
|
110 |
-
|
111 |
-
|
112 |
-
lines=7,
|
113 |
-
),
|
114 |
-
gr.Textbox(
|
115 |
-
value="You are a friendly Chatbot.",
|
116 |
-
label="System message",
|
117 |
-
),
|
118 |
-
gr.Slider(
|
119 |
-
minimum=1,
|
120 |
-
maximum=2048,
|
121 |
-
value=512,
|
122 |
-
step=1,
|
123 |
-
label="Max new tokens",
|
124 |
-
),
|
125 |
-
gr.Slider(
|
126 |
-
minimum=0.1,
|
127 |
-
maximum=4.0,
|
128 |
-
value=0.7,
|
129 |
-
step=0.1,
|
130 |
-
label="Temperature",
|
131 |
),
|
|
|
|
|
132 |
gr.Slider(
|
133 |
minimum=0.1,
|
134 |
maximum=1.0,
|
@@ -139,5 +61,6 @@ demo = gr.ChatInterface(
|
|
139 |
],
|
140 |
)
|
141 |
|
|
|
142 |
if __name__ == "__main__":
|
143 |
demo.launch()
|
|
|
28 |
response = ""
|
29 |
|
30 |
for message in client.chat_completion(
|
31 |
+
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
|
|
|
|
|
|
|
|
32 |
):
|
33 |
token = message.choices[0].delta.content
|
34 |
|
|
|
36 |
yield response
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"""
|
40 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
41 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
demo = gr.ChatInterface(
|
43 |
+
respond,
|
44 |
additional_inputs=[
|
45 |
+
gr.Textbox(value="**I am a large language model trained on a massive dataset of text and code. I can follow your instructions and complete your requests thoughtfully. I will use my knowledge to craft the perfect prompt for your desired outcome.**", label="System message"),
|
46 |
+
gr.Textbox(label="**Task:**", placeholder="Write your desired task here"),
|
47 |
+
gr.Textbox(label="**Context:**", placeholder="Provide any relevant background information"),
|
48 |
gr.Textbox(
|
49 |
+
label="**Response format:**",
|
50 |
+
placeholder="Specify how you want the output presented (e.g., list, code, essay)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
),
|
52 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
53 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
gr.Slider(
|
55 |
minimum=0.1,
|
56 |
maximum=1.0,
|
|
|
61 |
],
|
62 |
)
|
63 |
|
64 |
+
|
65 |
if __name__ == "__main__":
|
66 |
demo.launch()
|