Upload 2 files
Browse files- DataLoader.py +119 -0
- app.py +87 -0
DataLoader.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Class to fetch news and stock data from the web for a specific ticker and combine them into a dataframe.
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import requests
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import yfinance as yf
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from pygooglenews import GoogleNews
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 11 |
+
from transformers import pipeline
|
| 12 |
+
class DataLoader:
|
| 13 |
+
def __init__(self, ticker, time_period_news, time_period_stock, news_decay_rate = 0):
|
| 14 |
+
self.ticker = ticker
|
| 15 |
+
self.time_period_news = time_period_news
|
| 16 |
+
self.time_period_stock = time_period_stock
|
| 17 |
+
self.news_decay_rate = news_decay_rate
|
| 18 |
+
|
| 19 |
+
def get_data(self):
|
| 20 |
+
stock_data = self.get_stock_data()
|
| 21 |
+
news_data = self.get_news_data()
|
| 22 |
+
news_sentiment = self.get_sentiment(news_data)
|
| 23 |
+
combined_data = self.combine_data(stock_data, news_sentiment)
|
| 24 |
+
|
| 25 |
+
if self.news_decay_rate != 0:
|
| 26 |
+
combined_data = self.news_decay(combined_data, self.news_decay_rate)
|
| 27 |
+
|
| 28 |
+
return combined_data
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_stock_data(self):
|
| 32 |
+
data = yf.download(self.ticker, period = self.time_period_stock)
|
| 33 |
+
df = pd.DataFrame()
|
| 34 |
+
df['Open'] = data['Open']
|
| 35 |
+
df['Close'] = data['Close']
|
| 36 |
+
df['High'] = data['High']
|
| 37 |
+
df['Low'] = data['Low']
|
| 38 |
+
|
| 39 |
+
return df
|
| 40 |
+
|
| 41 |
+
def get_news_data(self):
|
| 42 |
+
googlenews = GoogleNews()
|
| 43 |
+
news_data = googlenews.search(self.ticker, when=self.time_period_news)
|
| 44 |
+
news_data = pd.DataFrame(news_data['entries'])
|
| 45 |
+
return news_data
|
| 46 |
+
|
| 47 |
+
def get_sentiment(self, news_data):
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
| 49 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
| 50 |
+
classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
| 51 |
+
|
| 52 |
+
news_sentiment = []
|
| 53 |
+
for i in range(len(news_data)):
|
| 54 |
+
sentiment = classifier(news_data['title'][i], top_k=None)
|
| 55 |
+
postive_score = sentiment[0]['score']
|
| 56 |
+
negative_score = sentiment[1]['score']
|
| 57 |
+
neutral_score = sentiment[2]['score']
|
| 58 |
+
reformmated_time_stamp = pd.to_datetime(news_data['published'][i]).date()
|
| 59 |
+
news_sentiment.append({'Date': reformmated_time_stamp, 'positive_score': postive_score, 'negative_score': negative_score, 'neutral_score': neutral_score})
|
| 60 |
+
return pd.DataFrame(news_sentiment)
|
| 61 |
+
|
| 62 |
+
def combine_data(self, stock_data, news_sentiment):
|
| 63 |
+
news_sentiment = (
|
| 64 |
+
news_sentiment
|
| 65 |
+
.groupby('Date')
|
| 66 |
+
.mean()
|
| 67 |
+
.fillna(0)
|
| 68 |
+
.reset_index()
|
| 69 |
+
.set_index('Date')
|
| 70 |
+
.sort_index()
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
common_index = pd.date_range(
|
| 74 |
+
start=pd.Timestamp(min(pd.Timestamp(stock_data.index[0]), pd.Timestamp(news_sentiment.index[0]))),
|
| 75 |
+
end=pd.Timestamp(max(pd.Timestamp(stock_data.index[-1]), pd.Timestamp(news_sentiment.index[-1]))),
|
| 76 |
+
freq='D'
|
| 77 |
+
)
|
| 78 |
+
stock_data = stock_data.reindex(common_index).fillna(-1)
|
| 79 |
+
|
| 80 |
+
news_sentiment = news_sentiment.reindex(common_index).fillna(0)
|
| 81 |
+
|
| 82 |
+
#Ensure stock_data and news_sentiment have combatile indices
|
| 83 |
+
stock_data.index = pd.to_datetime(stock_data.index).normalize()
|
| 84 |
+
news_sentiment.index = pd.to_datetime(news_sentiment.index).normalize()
|
| 85 |
+
|
| 86 |
+
combined_data = pd.merge(
|
| 87 |
+
stock_data,
|
| 88 |
+
news_sentiment,
|
| 89 |
+
how='left',
|
| 90 |
+
left_index=True,
|
| 91 |
+
right_index=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
#Drop all close values that are -1
|
| 95 |
+
combined_data = combined_data[combined_data['Close'] != -1]
|
| 96 |
+
#fill all missing values with 0
|
| 97 |
+
combined_data = combined_data.fillna(0)
|
| 98 |
+
|
| 99 |
+
return combined_data
|
| 100 |
+
|
| 101 |
+
def news_decay(self, Combined_data, decay_rate):
|
| 102 |
+
#We have lots of days in the data with no news. We will fill these days with the previous days news * decay_rate
|
| 103 |
+
#This will allow us to have a more continuous news data
|
| 104 |
+
combined_data = Combined_data.copy()
|
| 105 |
+
news_columns = ['positive_score', 'negative_score', 'neutral_score']
|
| 106 |
+
#We want to start from the oldest date and work our way to the newest date
|
| 107 |
+
for i in range(1, len(combined_data)):
|
| 108 |
+
for column in news_columns:
|
| 109 |
+
if combined_data[column][i] == 0:
|
| 110 |
+
combined_data[column][i] = combined_data[column][i-1] * decay_rate
|
| 111 |
+
return combined_data
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import yfinance as yf
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
import hopsworks
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
from tensorflow.keras.layers import LSTM, Dense
|
| 9 |
+
from tensorflow.keras.models import load_model
|
| 10 |
+
from DataLoader import DataLoader
|
| 11 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 12 |
+
|
| 13 |
+
# Function to generate a sine wave plot
|
| 14 |
+
def predict(index_name="^OMX"):
|
| 15 |
+
# Load the model
|
| 16 |
+
project = hopsworks.login(api_key_value="pwWjyzF8SYsYJGQp.uZRknwAGCDPMe2covG1e4uVY4LsJXhAyKYgUNADOGY3H67mRAzoBtEJGlskTWE8h")
|
| 17 |
+
mr = project.get_model_registry()
|
| 18 |
+
model = mr.get_model("FinanceModel", version=9)
|
| 19 |
+
saved_model_dir = model.download()
|
| 20 |
+
model = load_model(saved_model_dir + "/model.keras")
|
| 21 |
+
|
| 22 |
+
#Fetch the data used to train the model
|
| 23 |
+
time_period_news = '30d'
|
| 24 |
+
time_period_price = '3mo' #Needed to make sure we get 30 days of price data. Stock markets are closed on weekends and holidays
|
| 25 |
+
data_loader = DataLoader(index_name, time_period_news, time_period_price)
|
| 26 |
+
data = data_loader.get_data()
|
| 27 |
+
|
| 28 |
+
#Get the previous closing price
|
| 29 |
+
previous_closing_price = data['Close'].values
|
| 30 |
+
#Remove uneccessary data and scale the data
|
| 31 |
+
#The modell only takes the latest 30 days of data
|
| 32 |
+
data = data[-30:]
|
| 33 |
+
|
| 34 |
+
#Load the input and output scalers used to train the model
|
| 35 |
+
input_scaler = MinMaxScaler()
|
| 36 |
+
output_scaler = MinMaxScaler()
|
| 37 |
+
|
| 38 |
+
#Create a fake output data to fit the scaler
|
| 39 |
+
output_scaler.fit_transform(previous_closing_price.reshape(-1, 1))
|
| 40 |
+
|
| 41 |
+
#Scale the data
|
| 42 |
+
data = input_scaler.fit_transform(data)
|
| 43 |
+
|
| 44 |
+
#Format the data to be used by the model. The model expects the data to be in the shape (1, 30, 7)
|
| 45 |
+
data = data.reshape(1, 30, 7)
|
| 46 |
+
prediction = model.predict(data)
|
| 47 |
+
|
| 48 |
+
#Inverse the scaling
|
| 49 |
+
prediction = output_scaler.inverse_transform(prediction)[0]
|
| 50 |
+
print(prediction)
|
| 51 |
+
|
| 52 |
+
# predicted_value = index_close_price_list[-1] + 10
|
| 53 |
+
|
| 54 |
+
# Create the plot
|
| 55 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 56 |
+
ax.plot(range(len(previous_closing_price)), previous_closing_price, label="True Values", color="blue")
|
| 57 |
+
predicted_indices = np.arange(len(previous_closing_price), len(previous_closing_price) + len(prediction))
|
| 58 |
+
ax.scatter(predicted_indices, prediction, color="red", label="Predicted Value")
|
| 59 |
+
ax.axvline(len(previous_closing_price) - 1, linestyle="--", color="gray", alpha=0.6)
|
| 60 |
+
ax.set_title(f"Prediction for {index_name}")
|
| 61 |
+
ax.set_xlabel("Time")
|
| 62 |
+
ax.set_ylabel("Index Value")
|
| 63 |
+
ax.legend()
|
| 64 |
+
|
| 65 |
+
""" fig, ax = plt.subplots(figsize=(8, 4))
|
| 66 |
+
ax.plot(previous_closing_price, label='Previous Closing Prices', linestyle='--',)
|
| 67 |
+
|
| 68 |
+
# Create an array of indices for the predicted values, right after the last index of prev_closing
|
| 69 |
+
predicted_indices = np.arange(len(previous_closing_price), len(previous_closing_price) + len(prediction))
|
| 70 |
+
|
| 71 |
+
# Plot the predicted closing prices in red, using the correct indices
|
| 72 |
+
ax.plot(predicted_indices, prediction, color='red', label='Predicted Prices',linestyle='--',) """
|
| 73 |
+
|
| 74 |
+
return fig
|
| 75 |
+
|
| 76 |
+
# Create the Gradio interface
|
| 77 |
+
interface = gr.Interface(
|
| 78 |
+
fn=predict,
|
| 79 |
+
inputs=gr.Textbox(label="Financial Index Name", placeholder="Enter the name of the financial index..."),
|
| 80 |
+
outputs=gr.Plot(label="Index Prediction Plot"),
|
| 81 |
+
title="Financial Index Predictor",
|
| 82 |
+
description="Enter the name of a financial index to generate a plot showing true values for the past 30 days and the predicted value."
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Launch the app
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
interface.launch()
|