hammaad-swe commited on
Commit
11534de
Β·
1 Parent(s): 81917a3

feat: modularized code

Browse files
Files changed (6) hide show
  1. .gitignore +6 -0
  2. README.md +2 -2
  3. app.py +74 -131
  4. gaia_agent.py +33 -0
  5. logic.py +163 -0
  6. requirements.txt +4 -1
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .venv
2
+ .env
3
+ .vscode/
4
+ .idea/
5
+ .DS_Store
6
+ .gitattributes
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Template Final Assignment
3
  emoji: πŸ•΅πŸ»β€β™‚οΈ
4
  colorFrom: indigo
5
  colorTo: indigo
@@ -9,7 +9,7 @@ app_file: app.py
9
  pinned: false
10
  hf_oauth: true
11
  # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
12
- hf_oauth_expiration_minutes: 480
13
  ---
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: GAIA - Agents Course Assignment
3
  emoji: πŸ•΅πŸ»β€β™‚οΈ
4
  colorFrom: indigo
5
  colorTo: indigo
 
9
  pinned: false
10
  hf_oauth: true
11
  # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
12
+ hf_oauth_expiration_minutes: 567
13
  ---
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,160 +1,96 @@
1
  import os
 
 
2
  import gradio as gr
3
- import requests
4
- import inspect
5
  import pandas as pd
 
6
 
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
35
  return "Please Login to Hugging Face with the button.", None
36
 
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
  # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
 
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
  # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
  gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
 
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
153
 
154
  ---
155
  **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
 
 
 
 
158
  """
159
  )
160
 
@@ -162,20 +98,21 @@ with gr.Blocks() as demo:
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
 
166
  # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
@@ -183,14 +120,20 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"βœ… SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
+
3
+ import gaia_agent
4
  import gradio as gr
5
+ import logic
 
6
  import pandas as pd
7
+ from dotenv import load_dotenv
8
 
9
+ load_dotenv()
10
+
11
+
12
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
13
+ """Fetches all questions, runs the BasicAgent on them, submits all answers,
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  and displays the results.
 
 
 
15
 
16
+ Args:
17
+ profile: An optional gr.OAuthProfile object containing user information
18
+ if the user is logged in. If None, the user is not logged in.
19
+
20
+ Returns:
21
+ tuple[str, pd.DataFrame | None]: A tuple containing:
22
+ - A string representing the status of the run and submission process.
23
+ This could be a success message, an error message, or a message
24
+ indicating that no answers were produced.
25
+ - A pandas DataFrame containing the results log. This DataFrame will
26
+ be displayed in the Gradio interface. It can be None if an error
27
+ occurred before the agent was run.
28
+ """
29
+ # 0. Get user details
30
+ space_id = os.getenv("SPACE_ID")
31
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
32
+ print(agent_code)
33
  if profile:
34
+ username = f"{profile.username}"
35
  print(f"User logged in: {username}")
36
  else:
37
  print("User not logged in.")
38
  return "Please Login to Hugging Face with the button.", None
39
 
40
+ # 1. Instantiate Agent
 
 
 
 
41
  try:
42
+ agent = gaia_agent.GaiaAgent()
43
  except Exception as e:
44
  print(f"Error instantiating agent: {e}")
45
  return f"Error initializing agent: {e}", None
 
 
 
46
 
47
  # 2. Fetch Questions
 
48
  try:
49
+ questions_data = logic.fetch_all_questions()
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  except Exception as e:
51
+ return str(e), None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ # 3. Run the Agent
54
+ results_log, answers_payload = logic.run_agent(agent, questions_data)
55
  if not answers_payload:
56
  print("Agent did not produce any answers to submit.")
57
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
58
 
59
+ # 4. Prepare & Submit Answers
60
+ submission_data = {
61
+ "username": username.strip(),
62
+ "agent_code": agent_code,
63
+ "answers": answers_payload,
64
+ }
65
+ print(
66
+ f"Agent finished. Submitting {len(answers_payload)} answers for user '"
67
+ f"{username}'..."
68
+ )
69
+ return logic.submit_answers(submission_data, results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
 
72
  # --- Build Gradio Interface using Blocks ---
73
+ with gr.Blocks() as gaia_ui:
74
  gr.Markdown("# Basic Agent Evaluation Runner")
75
  gr.Markdown(
76
  """
77
  **Instructions:**
78
 
79
+ 1. Please clone this space, then modify the code to define your agent's
80
+ logic, the tools, the necessary packages, etc ...
81
+ 2. Log in to your Hugging Face account using the button below. This uses
82
+ your HF username for submission.
83
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your
84
+ agent, submit answers, and see the score.
85
 
86
  ---
87
  **Disclaimers:**
88
+ Once clicking on the "submit button, it can take quite some time ( this is
89
+ the time for the agent to go through all the questions).
90
+ This space provides a basic setup and is intentionally sub-optimal to
91
+ encourage you to develop your own, more robust solution. For instance for the
92
+ delay process of the submit button, a solution could be to cache the answers
93
+ and submit in a separate action or even to answer the questions in async.
94
  """
95
  )
96
 
 
98
 
99
  run_button = gr.Button("Run Evaluation & Submit All Answers")
100
 
101
+ status_output = gr.Textbox(
102
+ label="Run Status / Submission Result", lines=5, interactive=False
103
+ )
104
  # Removed max_rows=10 from DataFrame constructor
105
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
106
 
107
  run_button.click(
108
+ fn=run_and_submit_all, inputs=None, outputs=[status_output, results_table]
 
109
  )
110
 
111
  if __name__ == "__main__":
112
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
113
  # Check for SPACE_HOST and SPACE_ID at startup for information
114
  space_host_startup = os.getenv("SPACE_HOST")
115
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
116
 
117
  if space_host_startup:
118
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
 
120
  else:
121
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
122
 
123
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
124
  print(f"βœ… SPACE_ID found: {space_id_startup}")
125
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
126
+ print(
127
+ f" Repo Tree URL: https://huggingface.co/spaces/"
128
+ f"{space_id_startup}/tree/main"
129
+ )
130
  else:
131
+ print(
132
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL "
133
+ "cannot be determined."
134
+ )
135
 
136
+ print("-" * (60 + len(" App Starting ")) + "\n")
137
 
138
  print("Launching Gradio Interface for Basic Agent Evaluation...")
139
+ gaia_ui.launch(debug=True, share=False)
gaia_agent.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class GaiaAgent:
2
+ """
3
+ A basic agent that receives a question and returns a fixed answer.
4
+
5
+ This class serves as a placeholder or a simple baseline agent for testing
6
+ and demonstration purposes. It does not perform any sophisticated
7
+ reasoning or information retrieval.
8
+ """
9
+
10
+ def __init__(self):
11
+ """
12
+ Initializes the GaiaAgent.
13
+
14
+ Currently, this constructor simply prints a message to the console.
15
+ In a more complex implementation, this method might load a model,
16
+ connect to a database, or perform other setup tasks.
17
+ """
18
+ print("BasicAgent initialized.")
19
+
20
+ def __call__(self, question: str) -> str:
21
+ """
22
+ Processes a question and returns a fixed answer.
23
+
24
+ Args:
25
+ question: The question to be processed.
26
+
27
+ Returns:
28
+ A fixed string representing the agent's answer.
29
+ """
30
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
31
+ fixed_answer = "This is a default answer."
32
+ print(f"Agent returning fixed answer: {fixed_answer}")
33
+ return fixed_answer
logic.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Tuple
2
+
3
+ import pandas as pd
4
+ import requests
5
+ from gaia_agent import GaiaAgent
6
+ from pandas import DataFrame
7
+
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+ QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
11
+ SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
12
+
13
+
14
+ # --- Helper Methods ---
15
+ def fetch_all_questions() -> Dict:
16
+ """Fetches all questions from the specified API endpoint.
17
+
18
+ This function retrieves a list of questions from the API, handles potential errors
19
+ such as network issues, invalid responses, or empty question lists, and returns
20
+ the questions as a dictionary.
21
+
22
+ Returns:
23
+ Dict: A dictionary containing the questions data retrieved from the API.
24
+
25
+ Raises:
26
+ UserWarning: If there is an error fetching the questions, such as network issues,
27
+ invalid JSON response, or an empty question list. The exception message
28
+ provides details about the specific error encountered.
29
+ """
30
+ print(f"Fetching questions from: {QUESTIONS_URL}")
31
+ response = requests.get(QUESTIONS_URL, timeout=15)
32
+ try:
33
+ response.raise_for_status()
34
+ questions_data = response.json()
35
+ if not questions_data:
36
+ print("Fetched questions list is empty.")
37
+ raise UserWarning("Fetched questions list is empty or invalid format.")
38
+ print(f"Fetched {len(questions_data)} questions.")
39
+ return questions_data
40
+ except requests.exceptions.RequestException as e:
41
+ print(f"Error fetching questions: {e}")
42
+ raise UserWarning(f"Error fetching questions: {e}")
43
+ except requests.exceptions.JSONDecodeError as e:
44
+ print(f"Error decoding JSON response from questions endpoint: {e}")
45
+ print(f"Response text: {response.text[:500]}")
46
+ raise UserWarning(f"Error decoding server response for questions: {e}")
47
+ except Exception as e:
48
+ print(f"An unexpected error occurred fetching questions: {e}")
49
+ raise UserWarning(f"An unexpected error occurred fetching questions: {e}")
50
+
51
+
52
+ def submit_answers(submission_data: dict, results_log: list) -> Tuple[str, DataFrame]:
53
+ """Submits answers to the scoring API and returns the submission status and results.
54
+
55
+ This function sends the provided answers to the scoring API, handles potential errors
56
+ such as network issues, server errors, or invalid responses, and returns a status
57
+ message indicating the success or failure of the submission, along with a DataFrame
58
+ containing the results log.
59
+
60
+ Args:
61
+ submission_data (dict): A dictionary containing the answers to be submitted.
62
+ Expected to have a structure compatible with the scoring API.
63
+ results_log (list): A list of dictionaries containing the results log.
64
+ This log is converted to a Pandas DataFrame and returned.
65
+
66
+ Returns:
67
+ Tuple[str, DataFrame]: A tuple containing:
68
+ - A status message (str) indicating the submission status and any relevant
69
+ information or error messages.
70
+ - A Pandas DataFrame containing the results log.
71
+
72
+ """
73
+ try:
74
+ response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
75
+ response.raise_for_status()
76
+ result_data = response.json()
77
+ final_status = (
78
+ f"Submission Successful!\n"
79
+ f"User: {result_data.get('username')}\n"
80
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
81
+ f"({result_data.get('correct_count', '?')}/"
82
+ f"{result_data.get('total_attempted', '?')} correct)\n"
83
+ f"Message: {result_data.get('message', 'No message received.')}"
84
+ )
85
+ print("Submission successful.")
86
+ results_df = pd.DataFrame(results_log)
87
+ return final_status, results_df
88
+ except requests.exceptions.HTTPError as e:
89
+ error_detail = f"Server responded with status {e.response.status_code}."
90
+ try:
91
+ error_json = e.response.json()
92
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
93
+ except requests.exceptions.JSONDecodeError:
94
+ error_detail += f" Response: {e.response.text[:500]}"
95
+ status_message = f"Submission Failed: {error_detail}"
96
+ print(status_message)
97
+ results_df = pd.DataFrame(results_log)
98
+ return status_message, results_df
99
+ except requests.exceptions.Timeout:
100
+ status_message = "Submission Failed: The request timed out."
101
+ print(status_message)
102
+ results_df = pd.DataFrame(results_log)
103
+ return status_message, results_df
104
+ except requests.exceptions.RequestException as e:
105
+ status_message = f"Submission Failed: Network error - {e}"
106
+ print(status_message)
107
+ results_df = pd.DataFrame(results_log)
108
+ return status_message, results_df
109
+ except Exception as e:
110
+ status_message = f"An unexpected error occurred during submission: {e}"
111
+ print(status_message)
112
+ results_df = pd.DataFrame(results_log)
113
+ return status_message, results_df
114
+
115
+
116
+ def run_agent(agent: GaiaAgent,
117
+ questions_data: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
118
+ """Runs the agent on a list of questions and returns the results and answers.
119
+
120
+ This function iterates through a list of questions, runs the provided agent on each
121
+ question, and collects the results and answers. It handles potential errors during
122
+ agent execution and returns the results log and the answers payload.
123
+
124
+ Args:
125
+ agent (GaiaAgent): An instance of the GaiaAgent class, which is responsible for
126
+ generating answers to the questions.
127
+ questions_data (List[Dict]): A list of dictionaries, where each dictionary
128
+ represents a question and contains at least the 'task_id' and 'question' keys.
129
+
130
+ Returns:
131
+ Tuple[List[Dict], List[Dict]]: A tuple containing:
132
+ - A list of dictionaries representing the results log, where each dictionary
133
+ contains the 'Task ID', 'Question', and 'Submitted Answer'.
134
+ - A list of dictionaries representing the answers payload, where each dictionary
135
+ contains the 'task_id' and 'submitted_answer'.
136
+ """
137
+ results_log = []
138
+ answers_payload = []
139
+
140
+ print(f"πŸš€ Running agent on {len(questions_data)} questions...")
141
+ for item in questions_data:
142
+ task_id = item.get("task_id")
143
+ question_text = item.get("question")
144
+ if not task_id or question_text is None:
145
+ print(f"⚠️ Skipping invalid item (missing task_id or question): {item}")
146
+ continue
147
+ try:
148
+ submitted_answer = agent(question_text)
149
+ answers_payload.append(
150
+ {"task_id": task_id, "submitted_answer": submitted_answer}
151
+ )
152
+ except Exception as e:
153
+ print(f"❌ Error running agent on task {task_id}: {e}")
154
+ submitted_answer = f"AGENT ERROR: {e}"
155
+
156
+ results_log.append(
157
+ {
158
+ "Task ID": task_id,
159
+ "Question": question_text,
160
+ "Submitted Answer": submitted_answer,
161
+ }
162
+ )
163
+ return results_log, answers_payload
requirements.txt CHANGED
@@ -1,2 +1,5 @@
1
  gradio
2
- requests
 
 
 
 
1
  gradio
2
+ gradio[oauth]
3
+ requests
4
+ python-dotenv
5
+ pandas