Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,214 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import spacy
|
4 |
+
from spacy.lang.en.stop_words import STOP_WORDS
|
5 |
+
from string import punctuation
|
6 |
+
from collections import Counter
|
7 |
+
from heapq import nlargest
|
8 |
+
import os
|
9 |
+
nlp = spacy.load("en_core_web_sm")
|
10 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
11 |
+
import datetime
|
12 |
+
|
13 |
+
from spacy import displacy
|
14 |
+
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
from wordcloud import WordCloud
|
17 |
+
from matplotlib import pyplot as plt
|
18 |
+
|
19 |
+
import nltk
|
20 |
+
from rank_bm25 import BM25Okapi
|
21 |
+
from sklearn.feature_extraction import _stop_words
|
22 |
+
import string
|
23 |
+
from tqdm.autonotebook import tqdm
|
24 |
+
|
25 |
+
import pandas as pd
|
26 |
+
|
27 |
+
import scipy.spatial
|
28 |
+
import pickle
|
29 |
+
from sentence_transformers import SentenceTransformer, util
|
30 |
+
import torch
|
31 |
+
import time
|
32 |
+
import torch
|
33 |
+
import transformers
|
34 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
35 |
+
from string import punctuation
|
36 |
+
# tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
37 |
+
|
38 |
+
import numpy as np
|
39 |
+
from sentence_transformers import SentenceTransformer
|
40 |
+
import scipy.spatial
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
#import os
|
48 |
+
|
49 |
+
def load_model():
|
50 |
+
return SentenceTransformer('all-MiniLM-L6-v2'),SentenceTransformer('multi-qa-MiniLM-L6-cos-v1'),CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
51 |
+
|
52 |
+
embedder,bi_encoder,cross_encoder = load_model()
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def lower_case(input_str):
|
58 |
+
input_str = input_str.lower()
|
59 |
+
return input_str
|
60 |
+
|
61 |
+
df_all = pd.read_csv('paris_clean_newer.csv')
|
62 |
+
|
63 |
+
|
64 |
+
df_combined = df_all.sort_values(['Hotel']).groupby('Hotel', sort=False).text.apply(''.join).reset_index(name='all_review')
|
65 |
+
df_combined_paris_summary = pd.read_csv('df_combined_paris.csv')
|
66 |
+
df_combined_paris_summary = df_combined_paris_summary[['Hotel','summary']]
|
67 |
+
|
68 |
+
import re
|
69 |
+
|
70 |
+
# df_combined = pd.read_csv('df_combined.csv')
|
71 |
+
|
72 |
+
df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x))
|
73 |
+
|
74 |
+
|
75 |
+
df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x))
|
76 |
+
df_basic = df_all[['Hotel','description','price_per_night']].drop_duplicates()
|
77 |
+
df_basic = df_basic.merge(df_combined_paris_summary,how='left')
|
78 |
+
df_combined_e = df_combined.merge(df_basic)
|
79 |
+
df_combined_e['all_review'] =df_combined_e['description']+ df_combined_e['all_review'] + df_combined_e['price_per_night']
|
80 |
+
|
81 |
+
df = df_combined_e.copy()
|
82 |
+
|
83 |
+
|
84 |
+
df_sentences = df_combined_e.set_index("all_review")
|
85 |
+
|
86 |
+
df_sentences = df_sentences["Hotel"].to_dict()
|
87 |
+
df_sentences_list = list(df_sentences.keys())
|
88 |
+
|
89 |
+
df_sentences_list = [str(d) for d in tqdm(df_sentences_list)]
|
90 |
+
#
|
91 |
+
corpus = df_sentences_list
|
92 |
+
# corpus_embeddings = embedder.encode(corpus,show_progress_bar=True)
|
93 |
+
corpus_embeddings = np.load('embeddings.npy')
|
94 |
+
|
95 |
+
bi_encoder.max_seq_length = 512 #Truncate long passages to 256 tokens
|
96 |
+
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
|
97 |
+
|
98 |
+
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
|
99 |
+
|
100 |
+
# corpus_embeddings_h = np.load('embeddings_h_r.npy')
|
101 |
+
|
102 |
+
with open('corpus_embeddings_bi_encoder.pickle', 'rb') as pkl:
|
103 |
+
doc_embedding = pickle.load(pkl)
|
104 |
+
|
105 |
+
with open('tokenized_corpus.pickle', 'rb') as pkl:
|
106 |
+
tokenized_corpus = pickle.load(pkl)
|
107 |
+
|
108 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
109 |
+
passages = corpus
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
# We lower case our text and remove stop-words from indexing
|
115 |
+
def bm25_tokenizer(text):
|
116 |
+
tokenized_doc = []
|
117 |
+
for token in text.lower().split():
|
118 |
+
token = token.strip(string.punctuation)
|
119 |
+
|
120 |
+
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
|
121 |
+
tokenized_doc.append(token)
|
122 |
+
return tokenized_doc
|
123 |
+
|
124 |
+
|
125 |
+
def search(query):
|
126 |
+
print("Input question:", query)
|
127 |
+
print("\n-------------------------\n")
|
128 |
+
|
129 |
+
##### BM25 search (lexical search) #####
|
130 |
+
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
131 |
+
top_n = np.argpartition(bm25_scores, -5)[-5:]
|
132 |
+
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
|
133 |
+
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
134 |
+
|
135 |
+
bm25list = []
|
136 |
+
print("Top-5 lexical search (BM25) hits")
|
137 |
+
for hit in bm25_hits[0:5]:
|
138 |
+
row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]]
|
139 |
+
|
140 |
+
print("\t{:.3f}\t".format(hit['score']),row_dict['Hotel'].values[0])
|
141 |
+
de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]]
|
142 |
+
print(f'\tPrice Per night: {de.price_per_night.values[0]}')
|
143 |
+
print(de.description.values[0])
|
144 |
+
# doc = corpus[hit['corpus_id']]
|
145 |
+
# kp.get_key_phrases(doc)
|
146 |
+
|
147 |
+
bm25list.append(
|
148 |
+
{
|
149 |
+
"name":row_dict['Hotel'].values[0],
|
150 |
+
"score": hit['score'],
|
151 |
+
"desc":de.description.values[0],
|
152 |
+
"price": de.price_per_night.values[0],
|
153 |
+
}
|
154 |
+
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
#### Sematic Search #####
|
159 |
+
# Encode the query using the bi-encoder and find potentially relevant passages
|
160 |
+
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
161 |
+
# question_embedding = question_embedding.cuda()
|
162 |
+
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
|
163 |
+
hits = hits[0] # Get the hits for the first query
|
164 |
+
|
165 |
+
##### Re-Ranking #####
|
166 |
+
# Now, score all retrieved passages with the cross_encoder
|
167 |
+
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
168 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
169 |
+
|
170 |
+
# Sort results by the cross-encoder scores
|
171 |
+
for idx in range(len(cross_scores)):
|
172 |
+
hits[idx]['cross-score'] = cross_scores[idx]
|
173 |
+
|
174 |
+
# Output of top-5 hits from bi-encoder
|
175 |
+
print("\n-------------------------\n")
|
176 |
+
print("Top-5 Bi-Encoder Retrieval hits")
|
177 |
+
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
178 |
+
for hit in hits[0:5]:
|
179 |
+
# print("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))
|
180 |
+
row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]]
|
181 |
+
print("\t{:.3f}\t".format(hit['score']),row_dict['Hotel'].values[0])
|
182 |
+
de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]]
|
183 |
+
print(f'\tPrice Per night: {de.price_per_night.values[0]}')
|
184 |
+
print(de.description.values[0])
|
185 |
+
|
186 |
+
# Output of top-5 hits from re-ranker
|
187 |
+
print("\n-------------------------\n")
|
188 |
+
print("Top-5 Cross-Encoder Re-ranker hits")
|
189 |
+
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
190 |
+
for hit in hits[0:5]:
|
191 |
+
# print("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))
|
192 |
+
row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]]
|
193 |
+
print("\t{:.3f}\t".format(hit['cross-score']),row_dict['Hotel'].values[0])
|
194 |
+
de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]]
|
195 |
+
print(f'\tPrice Per night: {de.price_per_night.values[0]}')
|
196 |
+
print(de.description.values[0])
|
197 |
+
|
198 |
+
|
199 |
+
return bm25list
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
def greet(query):
|
205 |
+
bm25 = search(query)
|
206 |
+
# print("Input question:", na)
|
207 |
+
# print("\n-------------------------\n")
|
208 |
+
# k='name'
|
209 |
+
return bm25
|
210 |
+
|
211 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
212 |
+
|
213 |
+
demo.launch(share=True)
|
214 |
|
|
|
|