hamza50's picture
Update app.py
2fa54f7
raw
history blame
2.18 kB
import gradio as gr
import pandas as pd
import tiktoken
import pandas as pd
import time
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest
import nltk
import numpy as np
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, util
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
from openai.embeddings_utils import get_embedding, cosine_similarity
import os
df = pd.read_pickle('miami.pkl') #to load 123.pkl back to the dataframe df
embedder = SentenceTransformer('all-mpnet-base-v2')
def search(query):
n = 15
query_embedding = embedder.encode(query)
df["similarity"] = df.embedding.apply(lambda x: cosine_similarity(x, query_embedding.reshape(768,-1)))
results = (
df.sort_values("similarity", ascending=False)
.head(n))
resultlist = []
hlist = []
for r in results.index:
if results.name[r] not in hlist:
smalldf = results.loc[results.name == results.name[r]]
smallarr = smalldf.similarity[r].max()
sm =smalldf.rating[r].mean()
if smalldf.shape[1] > 3:
smalldf = smalldf[:3]
resultlist.append(
{
"name":results.name[r],
"relevance score": smallarr.tolist(),
"priceRange": smalldf.priceRange[r],
"rating": sm.tolist(),
"title": [ smalldf.title[s] for s in smalldf.index],
"relevant_reviews": [ smalldf.review[s] for s in smalldf.index]
})
hlist.append(results.name[r])
return resultlist
def greet(query):
bm25 = search(query)
return bm25
examples = [
["LGBTQ+ Friendly"],
["Best Nightlife "],
["Stunning Pools"],
["The Most Romantic Hotels in Miami"],
["Eco-Friendly Hotels"]
]
demo = gr.Interface(fn=greet, outputs="json",title="miami-hotel-search",
inputs=gr.inputs.Textbox(lines=5, label="Tell us what you like in a hotel?",default='hotels for LGBTQ+ community and nice rooftop pool'),examples=examples)
demo.launch()