Spaces:
Configuration error
Configuration error
| # Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion | |
| # and https://github.com/hojonathanho/diffusion | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin | |
| class Time_Windows(): | |
| def __init__(self, t_initial=1, t_terminal=0, num_windows=4, precision=1./1000) -> None: | |
| assert t_terminal < t_initial | |
| time_windows = [ 1.*i/num_windows for i in range(1, num_windows+1)][::-1] | |
| self.window_starts = time_windows # [1.0, 0.75, 0.5, 0.25] | |
| self.window_ends = time_windows[1:] + [t_terminal] # [0.75, 0.5, 0.25, 0] | |
| self.precision = precision | |
| def get_window(self, tp): | |
| idx = 0 | |
| # robust to numerical error; e.g, (0.6+1/10000) belongs to [0.6, 0.3) | |
| while (tp-0.1*self.precision) <= self.window_ends[idx]: | |
| idx += 1 | |
| return self.window_starts[idx], self.window_ends[idx] | |
| def lookup_window(self, timepoint): | |
| if timepoint.dim() == 0: | |
| t_start, t_end = self.get_window(timepoint) | |
| t_start = torch.ones_like(timepoint) * t_start | |
| t_end = torch.ones_like(timepoint) * t_end | |
| else: | |
| t_start = torch.zeros_like(timepoint) | |
| t_end = torch.zeros_like(timepoint) | |
| bsz = timepoint.shape[0] | |
| for i in range(bsz): | |
| tp = timepoint[i] | |
| ts, te = self.get_window(tp) | |
| t_start[i] = ts | |
| t_end[i] = te | |
| return t_start, t_end | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM | |
| class PeRFlowSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| pred_original_sample: Optional[torch.FloatTensor] = None | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class PeRFlowScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| `ReFlowScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with | |
| non-Markovian guidance. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| beta_start (`float`, defaults to 0.0001): | |
| The starting `beta` value of inference. | |
| beta_end (`float`, defaults to 0.02): | |
| The final `beta` value. | |
| beta_schedule (`str`, defaults to `"linear"`): | |
| The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
| `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
| trained_betas (`np.ndarray`, *optional*): | |
| Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
| set_alpha_to_one (`bool`, defaults to `True`): | |
| Each diffusion step uses the alphas product value at that step and at the previous one. For the final step | |
| there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, | |
| otherwise it uses the alpha value at step 0. | |
| prediction_type (`str`, defaults to `epsilon`, *optional*) | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.00085, | |
| beta_end: float = 0.012, | |
| beta_schedule: str = "scaled_linear", | |
| trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
| set_alpha_to_one: bool = False, | |
| prediction_type: str = "epsilon", | |
| t_noise: float = 1, | |
| t_clean: float = 0, | |
| num_time_windows = 4, | |
| ): | |
| if trained_betas is not None: | |
| self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
| elif beta_schedule == "linear": | |
| self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
| elif beta_schedule == "scaled_linear": | |
| # this schedule is very specific to the latent diffusion model. | |
| self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
| elif beta_schedule == "squaredcos_cap_v2": | |
| # Glide cosine schedule | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| else: | |
| raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| # At every step in ddim, we are looking into the previous alphas_cumprod | |
| # For the final step, there is no previous alphas_cumprod because we are already at 0 | |
| # `set_alpha_to_one` decides whether we set this parameter simply to one or | |
| # whether we use the final alpha of the "non-previous" one. | |
| self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] | |
| # # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| self.time_windows = Time_Windows(t_initial=t_noise, t_terminal=t_clean, | |
| num_windows=num_time_windows, | |
| precision=1./num_train_timesteps) | |
| def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.FloatTensor`: | |
| A scaled input sample. | |
| """ | |
| return sample | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| """ | |
| if num_inference_steps < self.config.num_time_windows: | |
| num_inference_steps = self.config.num_time_windows | |
| print(f"### We recommend a num_inference_steps not less than num_time_windows. It's set as {self.config.num_time_windows}.") | |
| timesteps = [] | |
| for i in range(self.config.num_time_windows): | |
| if i < num_inference_steps%self.config.num_time_windows: | |
| num_steps_cur_win = num_inference_steps//self.config.num_time_windows+1 | |
| else: | |
| num_steps_cur_win = num_inference_steps//self.config.num_time_windows | |
| t_s = self.time_windows.window_starts[i] | |
| t_e = self.time_windows.window_ends[i] | |
| timesteps_cur_win = np.linspace(t_s, t_e, num=num_steps_cur_win, endpoint=False) | |
| timesteps.append(timesteps_cur_win) | |
| timesteps = np.concatenate(timesteps) | |
| self.timesteps = torch.from_numpy( | |
| (timesteps*self.config.num_train_timesteps).astype(np.int64) | |
| ).to(device) | |
| def get_window_alpha(self, timestep): | |
| time_windows = self.time_windows | |
| num_train_timesteps = self.config.num_train_timesteps | |
| t_win_start, t_win_end = time_windows.lookup_window(timestep / num_train_timesteps) | |
| t_win_len = t_win_end - t_win_start | |
| t_interval = timestep / num_train_timesteps - t_win_start # NOTE: negative value | |
| idx_start = (t_win_start*num_train_timesteps - 1 ).long() | |
| idx_end = torch.clamp( (t_win_end*num_train_timesteps - 1 ).long(), min=0) | |
| alpha_cumprod_s_e = self.alphas_cumprod[idx_start] / self.alphas_cumprod[idx_end] | |
| gamma_s_e = alpha_cumprod_s_e ** 0.5 | |
| return t_win_start, t_win_end, t_win_len, t_interval, gamma_s_e | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| return_dict: bool = True, | |
| ) -> Union[PeRFlowSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_ddim.PeRFlowSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.PeRFlowSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_ddim.PeRFlowSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.config.prediction_type == "epsilon": | |
| pred_epsilon = model_output | |
| t_win_start, t_win_end, t_win_len, t_interval, gamma_s_e = self.get_window_alpha(timestep) | |
| pred_sample_end = ( sample - (1-t_interval/t_win_len) * ((1-gamma_s_e**2)**0.5) * pred_epsilon ) \ | |
| / ( gamma_s_e + t_interval / t_win_len * (1-gamma_s_e) ) | |
| pred_velocity = (pred_sample_end - sample) / (t_win_end - (t_win_start + t_interval)) | |
| elif self.config.prediction_type == "velocity": | |
| pred_velocity = model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `velocity`." | |
| ) | |
| # get dt | |
| idx = torch.argwhere(torch.where(self.timesteps==timestep, 1,0)) | |
| prev_step = self.timesteps[idx+1] if (idx+1)<len(self.timesteps) else 0 | |
| dt = (prev_step - timestep) / self.config.num_train_timesteps | |
| dt = dt.to(sample.device, sample.dtype) | |
| prev_sample = sample + dt * pred_velocity | |
| if not return_dict: | |
| return (prev_sample,) | |
| return PeRFlowSchedulerOutput(prev_sample=prev_sample, pred_original_sample=None) | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.FloatTensor: | |
| # Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
| alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
| timesteps = timesteps.to(original_samples.device) - 1 # indexing from 0 | |
| sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
| sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
| while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
| sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
| while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
| noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |