File size: 8,643 Bytes
eb4d305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# πŸ“Š Dense Captioning Platform API Documentation

## Overview

The Dense Captioning Platform provides comprehensive chart analysis through a Gradio-based API. It can classify chart types, detect chart elements, and segment data points from uploaded images.

## API Access

**Base URL:** `https://hanszhu-dense-captioning-platform.hf.space`

**API Type:** Gradio Client API (not RESTful)

## Installation

### Prerequisites

```bash
pip install gradio-client
```

### Quick Start

### Python Client (Recommended)

```python
from gradio_client import Client, handle_file

# Initialize client with direct URL
client = Client("https://hanszhu-dense-captioning-platform.hf.space")

# Analyze a chart image using file path
result = client.predict(
    image=handle_file('path/to/your/chart.png'),
    fn_index=0
)

print(result)
```

### Using a URL

```python
from gradio_client import Client, handle_file

client = Client("https://hanszhu-dense-captioning-platform.hf.space")

# Use a publicly accessible image URL
result = client.predict(
    image=handle_file("https://example.com/chart.png"),
    fn_index=0
)

print(result)
```

## Input Parameters

| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| `image` | File/URL | Yes | Chart image to analyze (PNG, JPG, JPEG supported) |

## Important Notes

### βœ… Working Approach
- **Use `fn_index=0`** instead of `api_name="/predict"`
- **Use direct URL** `"https://hanszhu-dense-captioning-platform.hf.space"`
- **Always use `handle_file()`** for both local files and URLs
- **This is a Gradio Client API**, not a RESTful API

### ❌ What Doesn't Work
- Direct HTTP POST requests to `/predict`
- Using `api_name="/predict"` with this setup
- Using `Client("hanszhu/Dense-Captioning-Platform")` (use direct URL instead)

## Output Format

The API returns a JSON object with the following structure:

```json
{
    "chart_type_id": 4,
    "chart_type_label": "Bar plot",
    "element_result": {
        "bboxes": [...],
        "segments": [...]
    },
    "datapoint_result": {
        "bboxes": [...],
        "segments": [...]
    },
    "status": "Full analysis completed",
    "processing_time": 2.345
}
```

### Output Fields

| Field | Type | Description |
|-------|------|-------------|
| `chart_type_id` | int | Numeric identifier for chart type (0-27) |
| `chart_type_label` | string | Human-readable chart type name |
| `element_result` | object/string | Detected chart elements (titles, axes, legends, etc.) |
| `datapoint_result` | object/string | Segmented data points and regions |
| `status` | string | Processing status message |
| `processing_time` | float | Time taken for analysis in seconds |

## Supported Chart Types

The platform can classify 28 different chart types:

| ID | Chart Type | ID | Chart Type |
|----|------------|----|------------|
| 0 | Line graph | 14 | Histogram |
| 1 | Natural image | 15 | Box plot |
| 2 | Table | 16 | Vector plot |
| 3 | 3D object | 17 | Pie chart |
| 4 | Bar plot | 18 | Surface plot |
| 5 | Scatter plot | 19 | Algorithm |
| 6 | Medical image | 20 | Contour plot |
| 7 | Sketch | 21 | Tree diagram |
| 8 | Geographic map | 22 | Bubble chart |
| 9 | Flow chart | 23 | Polar plot |
| 10 | Heat map | 24 | Area chart |
| 11 | Mask | 25 | Pareto chart |
| 12 | Block diagram | 26 | Radar chart |
| 13 | Venn diagram | 27 | Confusion matrix |

## Chart Elements Detected

The element detection model identifies:

- **Titles & Labels**: Chart title, subtitle, axis labels
- **Axes**: X-axis, Y-axis, tick labels
- **Legend**: Legend title, legend items, legend text
- **Data Elements**: Data points, data lines, data bars, data areas
- **Structural Elements**: Grid lines, plot areas

## Error Handling

The API returns error messages in the response fields when issues occur:

```json
{
    "chart_type_id": "Error: Model not available",
    "chart_type_label": "Error: Model not available",
    "element_result": "Error: Invalid image format",
    "datapoint_result": "Error: Processing failed",
    "status": "Error in chart classification",
    "processing_time": 0.0
}
```

## Rate Limits

- **Free Tier**: Limited requests per hour
- **Processing Time**: Typically 2-5 seconds per image
- **Image Size**: Recommended max 10MB

## Complete Working Example

Here's a complete example that demonstrates all the working patterns:

```python
from gradio_client import Client, handle_file
import json

def analyze_chart(image_path_or_url):
    """
    Analyze a chart image using the Dense Captioning Platform API
    
    Args:
        image_path_or_url (str): Path to local image file or URL to image
    
    Returns:
        dict: Analysis results with chart type, elements, and data points
    """
    try:
        # Initialize client with direct URL
        client = Client("https://hanszhu-dense-captioning-platform.hf.space")
        
        # Make prediction using the working approach
        result = client.predict(
            image=handle_file(image_path_or_url),
            fn_index=0
        )
        
        return result
        
    except Exception as e:
        return {
            "error": f"API call failed: {str(e)}",
            "status": "Error",
            "processing_time": 0.0
        }

# Example usage
if __name__ == "__main__":
    # Test with a local file
    local_result = analyze_chart("path/to/your/chart.png")
    print("Local file result:", json.dumps(local_result, indent=2))
    
    # Test with a URL
    url_result = analyze_chart("https://example.com/chart.png")
    print("URL result:", json.dumps(url_result, indent=2))
```

## Examples

### Example 1: Bar Chart Analysis

```python
from gradio_client import Client, handle_file

client = Client("https://hanszhu-dense-captioning-platform.hf.space")

# Analyze a bar chart
result = client.predict(
    image=handle_file('bar_chart.png'),
    fn_index=0
)

print(f"Chart Type: {result['chart_type_label']}")
print(f"Processing Time: {result['processing_time']}s")
```

### Example 2: Batch Processing

```python
from gradio_client import Client, handle_file
import os

client = Client("https://hanszhu-dense-captioning-platform.hf.space")

# Process multiple charts
chart_files = ['chart1.png', 'chart2.png', 'chart3.png']
results = []

for chart_file in chart_files:
    if os.path.exists(chart_file):
        result = client.predict(
            image=handle_file(chart_file),
            fn_index=0
        )
        results.append(result)
        print(f"Processed {chart_file}: {result['chart_type_label']}")
```

### Example 3: Test with Public Image

```python
from gradio_client import Client, handle_file

client = Client("https://hanszhu-dense-captioning-platform.hf.space")

# Test with a public image URL
result = client.predict(
    image=handle_file("https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"),
    fn_index=0
)

print("βœ… API Test Successful!")
print(f"Chart Type: {result['chart_type_label']}")
print(f"Status: {result['status']}")
```

## Troubleshooting

### Common Issues

1. **"Model not available"**: The models are still loading, wait a moment and retry
2. **"Invalid image format"**: Ensure the image is in PNG, JPG, or JPEG format
3. **"Processing failed"**: The image might be corrupted or too large
4. **"Expecting value: line 1 column 1"**: Use `fn_index=0` instead of `api_name="/predict"`
5. **"Cannot find a function with api_name"**: Use direct URL and `fn_index=0`

### Best Practices

1. **Image Quality**: Use clear, high-resolution images for best results
2. **Format**: PNG or JPG formats work best
3. **Size**: Keep images under 10MB for faster processing
4. **Client Setup**: Always use direct URL and `fn_index=0`
5. **File Handling**: Always use `handle_file()` for both local files and URLs
6. **Retry Logic**: Implement retry logic for failed requests

### Quick Test

To verify the API is working, run this test:

```python
from gradio_client import Client, handle_file

try:
    client = Client("https://hanszhu-dense-captioning-platform.hf.space")
    result = client.predict(
        image=handle_file("https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"),
        fn_index=0
    )
    print("βœ… API is working!")
    print(f"Chart Type: {result['chart_type_label']}")
except Exception as e:
    print(f"❌ API test failed: {e}")
```

## Support

For issues or questions:
- Check the [Hugging Face Space](https://huggingface.co/spaces/hanszhu/Dense-Captioning-Platform)
- Review the error messages in the API response
- Ensure your image format and size are within limits