Spaces:
Sleeping
Sleeping
File size: 15,345 Bytes
eb4d305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# cascade_rcnn_r50_fpn_meta.py - Enhanced config with Swin Transformer backbone
#
# PROGRESSIVE LOSS STRATEGY:
# - All 3 Cascade stages start with SmoothL1Loss for stable initial training
# - At epoch 5, Stage 3 (final stage) switches to GIoULoss via ProgressiveLossHook
# - Stage 1 & 2 remain SmoothL1Loss throughout training
# - This ensures model stability before introducing more complex IoU-based losses
# Custom imports - this registers our modules without polluting config namespace
custom_imports = dict(
imports=[
'custom_models.custom_dataset',
'custom_models.register',
'custom_models.custom_hooks',
'custom_models.progressive_loss_hook',
],
allow_failed_imports=False
)
# Add to Python path
import sys
import os
# Use a simpler path approach that doesn't rely on __file__
sys.path.insert(0, os.path.join(os.getcwd(), '..', '..'))
# Custom Cascade model with coordinate handling for chart data
model = dict(
type='CustomCascadeWithMeta', # Use custom model with coordinate handling
coordinate_standardization=dict(
enabled=True,
origin='bottom_left', # Match annotation creation coordinate system
normalize=True,
relative_to_plot=False, # Keep simple for now
scale_to_axis=False # Keep simple for now
),
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
# ----- Swin Transformer Base (22K) Backbone + FPN -----
backbone=dict(
type='SwinTransformer',
embed_dims=128, # Swin Base embedding dimensions
depths=[2, 2, 18, 2], # Swin Base depths
num_heads=[4, 8, 16, 32], # Swin Base attention heads
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.3, # Slightly higher for more complex model
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth'
)
),
neck=dict(
type='FPN',
in_channels=[128, 256, 512, 1024], # Swin Base: embed_dims * 2^(stage)
out_channels=256,
num_outs=6,
start_level=0,
add_extra_convs='on_input'
),
# Enhanced RPN with smaller anchors for tiny objects + improved losses
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[1, 2, 4, 8], # Even smaller scales for tiny objects
ratios=[0.5, 1.0, 2.0], # Multiple aspect ratios
strides=[4, 8, 16, 32, 64, 128]), # Extended FPN strides
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
# Progressive Loss Strategy: Start with SmoothL1 for all 3 stages
# Stage 3 (final stage) will switch to GIoU at epoch 5 via ProgressiveLossHook
roi_head=dict(
type='CascadeRoIHead',
num_stages=3,
stage_loss_weights=[1, 0.5, 0.25],
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
# Stage 1: Always SmoothL1Loss (coarse detection)
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=21, # 21 enhanced categories
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
# Stage 2: Always SmoothL1Loss (intermediate refinement)
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=21, # 21 enhanced categories
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
# Stage 3: SmoothL1 → GIoU at epoch 5 (progressive switching)
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=21, # 21 enhanced categories
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.02, 0.02, 0.05, 0.05]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
]),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=2000,
nms=dict(type='nms', iou_threshold=0.8),
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.4,
neg_iou_thr=0.4,
min_pos_iou=0.4,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
]),
# Enhanced test configuration with soft-NMS and multi-scale support
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.005, # Even lower threshold to catch more classes
nms=dict(
type='soft_nms', # Soft-NMS for better small object detection
iou_threshold=0.5,
min_score=0.005,
method='gaussian',
sigma=0.5),
max_per_img=500))) # Allow more detections
# Dataset settings - using cleaned annotations
dataset_type = 'ChartDataset'
data_root = '' # Remove data_root duplication
# Define the 21 chart element classes that match the annotations
CLASSES = (
'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label',
'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item',
'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line',
'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area'
)
# Updated to use cleaned annotation files
train_dataloader = dict(
batch_size=2, # Increased back to 2
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='legend_data/annotations_JSON_cleaned/train_enriched.json', # Full path
data_prefix=dict(img='legend_data/train/images/'), # Full path
metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect
filter_cfg=dict(filter_empty_gt=True, min_size=0, class_specific_min_sizes={
'data-point': 16, # Back to 16x16 from 32x32
'data-bar': 16, # Back to 16x16 from 32x32
'tick-label': 16, # Back to 16x16 from 32x32
'x-tick-label': 16, # Back to 16x16 from 32x32
'y-tick-label': 16 # Back to 16x16 from 32x32
}),
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Higher resolution for tiny objects
dict(type='RandomFlip', prob=0.5),
dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds
dict(type='PackDetInputs')
]
)
)
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Full path
data_prefix=dict(img='legend_data/train/images/'), # All images are in train/images
metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect
test_mode=True,
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Base resolution for validation
dict(type='LoadAnnotations', with_bbox=True),
dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
)
)
test_dataloader = val_dataloader
# Enhanced evaluators with debugging
val_evaluator = dict(
type='CocoMetric',
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Using cleaned annotations
metric='bbox',
format_only=False,
classwise=True, # Enable detailed per-class metrics table
proposal_nums=(100, 300, 1000)) # More detailed AR metrics
test_evaluator = val_evaluator
# Add custom hooks for debugging empty results
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='DetVisualizationHook'))
# Add NaN recovery hook for graceful handling like Faster R-CNN
custom_hooks = [
dict(type='SkipBadSamplesHook', interval=1), # Skip samples with bad GT data
dict(type='ChartTypeDistributionHook', interval=500), # Monitor class distribution
dict(type='MissingImageReportHook', interval=1000), # Track missing images
dict(type='NanRecoveryHook', # For logging & monitoring
fallback_loss=1.0,
max_consecutive_nans=100,
log_interval=50),
dict(type='ProgressiveLossHook', # Progressive loss switching
switch_epoch=5, # Switch stage 3 to GIoU at epoch 5
target_loss_type='GIoULoss', # Use GIoU for stage 3 (final stage)
loss_weight=1.0, # Keep same loss weight
warmup_epochs=2, # Monitor for 2 epochs after switch
monitor_stage_weights=True), # Log stage loss details
]
# Training configuration - extended to 40 epochs for Swin Base on small objects
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# Optimizer with standard stable settings
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001),
clip_grad=dict(max_norm=35.0, norm_type=2)
)
# Extended learning rate schedule with cosine annealing for Swin Base
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.05, # 1e-4 / 2e-2 = 0.05 (warmup from 1e-4 to 2e-2)
by_epoch=False,
begin=0,
end=1000), # 1k iteration warmup
dict(
type='CosineAnnealingLR',
begin=0,
end=40, # Match max_epochs
by_epoch=True,
T_max=40,
eta_min=1e-6, # Minimum learning rate
convert_to_iter_based=True)
]
# Work directory
work_dir = './work_dirs/cascade_rcnn_swin_base_40ep_cosine_fpn_meta'
# Multi-scale test configuration (uncomment to enable)
# img_scales = [(800, 500), (1600, 1000), (2400, 1500)] # 0.5x, 1.0x, 1.5x scales
# tta_model = dict(
# type='DetTTAModel',
# tta_cfg=dict(
# nms=dict(type='nms', iou_threshold=0.5),
# max_per_img=100)
# )
# Fresh start
resume = False
load_from = None
|