Spaces:
Sleeping
Sleeping
chore(space): switch to Docker SDK; add Dockerfile; minimal FastAPI app; trim requirements
Browse files- Dockerfile +26 -0
- README.md +1 -3
- app.py +5 -881
- requirements.txt +2 -12
Dockerfile
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
4 |
+
libgl1 libglib2.0-0 git libsm6 libxext6 libxrender1 \
|
5 |
+
&& rm -rf /var/lib/apt/lists/*
|
6 |
+
|
7 |
+
ENV PIP_NO_CACHE_DIR=1 \
|
8 |
+
MPLBACKEND=Agg \
|
9 |
+
MIM_IGNORE_INSTALL_PYTORCH=1
|
10 |
+
|
11 |
+
WORKDIR /app
|
12 |
+
|
13 |
+
COPY requirements.txt /app/requirements.txt
|
14 |
+
|
15 |
+
RUN python -m pip install --upgrade pip wheel setuptools openmim \
|
16 |
+
&& pip install --no-cache-dir -r requirements.txt \
|
17 |
+
&& pip install --no-cache-dir --index-url https://download.pytorch.org/whl/cpu torch==2.1.0 torchvision==0.16.0 \
|
18 |
+
&& mim install "mmengine==0.10.4" \
|
19 |
+
&& mim install "mmcv==2.1.0" \
|
20 |
+
&& mim install "mmdet==3.3.0"
|
21 |
+
|
22 |
+
COPY . /app
|
23 |
+
|
24 |
+
EXPOSE 7860
|
25 |
+
|
26 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -3,9 +3,7 @@ title: Dense Captioning Platform
|
|
3 |
emoji: 🐢
|
4 |
colorFrom: purple
|
5 |
colorTo: purple
|
6 |
-
sdk:
|
7 |
-
sdk_version: 5.38.2
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
3 |
emoji: 🐢
|
4 |
colorFrom: purple
|
5 |
colorTo: purple
|
6 |
+
sdk: docker
|
|
|
|
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
9 |
---
|
app.py
CHANGED
@@ -1,884 +1,8 @@
|
|
1 |
-
import
|
2 |
-
import sys
|
3 |
-
import gradio as gr
|
4 |
-
from PIL import Image
|
5 |
-
import torch
|
6 |
-
import numpy as np
|
7 |
-
import cv2
|
8 |
|
9 |
-
|
10 |
-
possible_paths = [
|
11 |
-
"./custom_models",
|
12 |
-
"../custom_models",
|
13 |
-
"./Dense-Captioning-Platform/custom_models"
|
14 |
-
]
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
break
|
20 |
-
|
21 |
-
# Add mmcv to path if it exists
|
22 |
-
if os.path.exists('./mmcv'):
|
23 |
-
sys.path.insert(0, os.path.abspath('./mmcv'))
|
24 |
-
print("✅ Added local mmcv to path")
|
25 |
-
|
26 |
-
# Import and register custom modules
|
27 |
-
try:
|
28 |
-
from custom_models import register
|
29 |
-
print("✅ Custom modules registered successfully")
|
30 |
-
except Exception as e:
|
31 |
-
print(f"⚠️ Warning: Could not register custom modules: {e}")
|
32 |
-
|
33 |
-
# ----------------------
|
34 |
-
# Optional MedSAM integration
|
35 |
-
# ----------------------
|
36 |
-
class MedSAMIntegrator:
|
37 |
-
def __init__(self):
|
38 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
-
self.medsam_model = None
|
40 |
-
self.current_image = None
|
41 |
-
self.current_image_path = None
|
42 |
-
self.embedding = None
|
43 |
-
self._load_medsam_model()
|
44 |
-
|
45 |
-
def _ensure_segment_anything(self):
|
46 |
-
try:
|
47 |
-
import segment_anything # noqa: F401
|
48 |
-
return True
|
49 |
-
except Exception as e:
|
50 |
-
print(f"⚠ segment_anything not available: {e}. Attempting install from Git...")
|
51 |
-
try:
|
52 |
-
import subprocess, sys
|
53 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/facebookresearch/segment-anything.git"])
|
54 |
-
import segment_anything # noqa: F401
|
55 |
-
print("✓ segment_anything installed")
|
56 |
-
return True
|
57 |
-
except Exception as install_err:
|
58 |
-
print(f"❌ Failed to install segment_anything: {install_err}")
|
59 |
-
return False
|
60 |
-
|
61 |
-
def _load_medsam_model(self):
|
62 |
-
try:
|
63 |
-
# Ensure library is present
|
64 |
-
if not self._ensure_segment_anything():
|
65 |
-
print("MedSAM features disabled (segment_anything not available)")
|
66 |
-
return
|
67 |
-
|
68 |
-
from segment_anything import sam_model_registry as _reg
|
69 |
-
import torch as _torch
|
70 |
-
|
71 |
-
# Preferred local path
|
72 |
-
medsam_ckpt_path = "models/medsam_vit_b.pth"
|
73 |
-
|
74 |
-
# If not present, fetch from HF Hub using provided repo or default
|
75 |
-
if not os.path.exists(medsam_ckpt_path):
|
76 |
-
try:
|
77 |
-
from huggingface_hub import hf_hub_download, list_repo_files
|
78 |
-
repo_id = os.environ.get("HF_MEDSAM_REPO", "Aniketg6/Fine-Tuned-MedSAM")
|
79 |
-
# Try to find a .pth/.pt in the repo
|
80 |
-
print(f"🔄 Trying to download MedSAM checkpoint from {repo_id} ...")
|
81 |
-
files = list_repo_files(repo_id)
|
82 |
-
candidate = None
|
83 |
-
for f in files:
|
84 |
-
lf = f.lower()
|
85 |
-
if lf.endswith(".pth") or lf.endswith(".pt"):
|
86 |
-
candidate = f
|
87 |
-
break
|
88 |
-
if candidate is None:
|
89 |
-
# Fallback to a common name
|
90 |
-
candidate = "medsam_vit_b.pth"
|
91 |
-
ckpt_path = hf_hub_download(repo_id=repo_id, filename=candidate, cache_dir="./models")
|
92 |
-
medsam_ckpt_path = ckpt_path
|
93 |
-
print(f"✅ Downloaded MedSAM checkpoint: {medsam_ckpt_path}")
|
94 |
-
except Exception as dl_err:
|
95 |
-
print(f"⚠ Could not fetch MedSAM checkpoint from HF Hub: {dl_err}")
|
96 |
-
print("MedSAM features disabled (no checkpoint)")
|
97 |
-
return
|
98 |
-
|
99 |
-
# Load checkpoint
|
100 |
-
checkpoint = _torch.load(medsam_ckpt_path, map_location='cpu')
|
101 |
-
self.medsam_model = _reg["vit_b"](checkpoint=None)
|
102 |
-
self.medsam_model.load_state_dict(checkpoint)
|
103 |
-
self.medsam_model.to(self.device)
|
104 |
-
self.medsam_model.eval()
|
105 |
-
print("✓ MedSAM model loaded successfully")
|
106 |
-
except Exception as e:
|
107 |
-
print(f"⚠ MedSAM model not available: {e}. MedSAM features disabled.")
|
108 |
-
|
109 |
-
def is_available(self):
|
110 |
-
return self.medsam_model is not None
|
111 |
-
|
112 |
-
def load_image(self, image_path, precomputed_embedding=None):
|
113 |
-
try:
|
114 |
-
from skimage import transform, io # local import to avoid hard dep if unused
|
115 |
-
img_np = io.imread(image_path)
|
116 |
-
if len(img_np.shape) == 2:
|
117 |
-
img_3c = np.repeat(img_np[:, :, None], 3, axis=-1)
|
118 |
-
else:
|
119 |
-
img_3c = img_np
|
120 |
-
self.current_image = img_3c
|
121 |
-
self.current_image_path = image_path
|
122 |
-
if precomputed_embedding is not None:
|
123 |
-
if not self.set_precomputed_embedding(precomputed_embedding):
|
124 |
-
self.get_embeddings()
|
125 |
-
else:
|
126 |
-
self.get_embeddings()
|
127 |
-
return True
|
128 |
-
except Exception as e:
|
129 |
-
print(f"Error loading image for MedSAM: {e}")
|
130 |
-
return False
|
131 |
-
|
132 |
-
@torch.no_grad()
|
133 |
-
def get_embeddings(self):
|
134 |
-
if self.current_image is None or self.medsam_model is None:
|
135 |
-
return None
|
136 |
-
from skimage import transform
|
137 |
-
img_1024 = transform.resize(
|
138 |
-
self.current_image, (1024, 1024), order=3, preserve_range=True, anti_aliasing=True
|
139 |
-
).astype(np.uint8)
|
140 |
-
img_1024 = (img_1024 - img_1024.min()) / np.clip(img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None)
|
141 |
-
img_1024_tensor = (
|
142 |
-
torch.tensor(img_1024).float().permute(2, 0, 1).unsqueeze(0).to(self.device)
|
143 |
-
)
|
144 |
-
self.embedding = self.medsam_model.image_encoder(img_1024_tensor)
|
145 |
-
return self.embedding
|
146 |
-
|
147 |
-
def set_precomputed_embedding(self, embedding_array):
|
148 |
-
try:
|
149 |
-
if isinstance(embedding_array, np.ndarray):
|
150 |
-
embedding_tensor = torch.tensor(embedding_array).to(self.device)
|
151 |
-
self.embedding = embedding_tensor
|
152 |
-
return True
|
153 |
-
return False
|
154 |
-
except Exception as e:
|
155 |
-
print(f"Error setting precomputed embedding: {e}")
|
156 |
-
return False
|
157 |
-
|
158 |
-
@torch.no_grad()
|
159 |
-
def medsam_inference(self, box_1024, height, width):
|
160 |
-
if self.embedding is None or self.medsam_model is None:
|
161 |
-
return None
|
162 |
-
box_torch = torch.as_tensor(box_1024, dtype=torch.float, device=self.embedding.device)
|
163 |
-
if len(box_torch.shape) == 2:
|
164 |
-
box_torch = box_torch[:, None, :]
|
165 |
-
sparse_embeddings, dense_embeddings = self.medsam_model.prompt_encoder(
|
166 |
-
points=None, boxes=box_torch, masks=None,
|
167 |
-
)
|
168 |
-
low_res_logits, _ = self.medsam_model.mask_decoder(
|
169 |
-
image_embeddings=self.embedding,
|
170 |
-
image_pe=self.medsam_model.prompt_encoder.get_dense_pe(),
|
171 |
-
sparse_prompt_embeddings=sparse_embeddings,
|
172 |
-
dense_prompt_embeddings=dense_embeddings,
|
173 |
-
multimask_output=False,
|
174 |
-
)
|
175 |
-
low_res_pred = torch.sigmoid(low_res_logits)
|
176 |
-
low_res_pred = torch.nn.functional.interpolate(
|
177 |
-
low_res_pred, size=(height, width), mode="bilinear", align_corners=False,
|
178 |
-
)
|
179 |
-
low_res_pred = low_res_pred.squeeze().cpu().numpy()
|
180 |
-
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
|
181 |
-
return medsam_seg
|
182 |
-
|
183 |
-
def segment_with_box(self, bbox):
|
184 |
-
if self.embedding is None or self.current_image is None:
|
185 |
-
return None
|
186 |
-
try:
|
187 |
-
H, W, _ = self.current_image.shape
|
188 |
-
x1, y1, x2, y2 = bbox
|
189 |
-
x1 = max(0, min(int(x1), W - 1))
|
190 |
-
y1 = max(0, min(int(y1), H - 1))
|
191 |
-
x2 = max(0, min(int(x2), W - 1))
|
192 |
-
y2 = max(0, min(int(y2), H - 1))
|
193 |
-
if x2 <= x1:
|
194 |
-
x2 = min(x1 + 10, W - 1)
|
195 |
-
if y2 <= y1:
|
196 |
-
y2 = min(y1 + 10, H - 1)
|
197 |
-
box_np = np.array([[x1, y1, x2, y2]], dtype=float)
|
198 |
-
box_1024 = box_np / np.array([W, H, W, H]) * 1024.0
|
199 |
-
medsam_mask = self.medsam_inference(box_1024, H, W)
|
200 |
-
if medsam_mask is not None:
|
201 |
-
return {"mask": medsam_mask, "confidence": 1.0, "method": "medsam_box"}
|
202 |
-
return None
|
203 |
-
except Exception as e:
|
204 |
-
print(f"Error in MedSAM box-based segmentation: {e}")
|
205 |
-
return None
|
206 |
-
|
207 |
-
# Single global instance
|
208 |
-
_medsam = MedSAMIntegrator()
|
209 |
-
|
210 |
-
|
211 |
-
def _extract_bboxes_from_mmdet_result(det_result):
|
212 |
-
"""Extract Nx4 xyxy bboxes from various MMDet result formats."""
|
213 |
-
boxes = []
|
214 |
-
try:
|
215 |
-
# MMDet 3.x: list of DetDataSample
|
216 |
-
if isinstance(det_result, list) and len(det_result) > 0:
|
217 |
-
sample = det_result[0]
|
218 |
-
if hasattr(sample, 'pred_instances'):
|
219 |
-
inst = sample.pred_instances
|
220 |
-
if hasattr(inst, 'bboxes'):
|
221 |
-
b = inst.bboxes
|
222 |
-
# mmengine structures may use .tensor for boxes
|
223 |
-
if hasattr(b, 'tensor'):
|
224 |
-
b = b.tensor
|
225 |
-
boxes = b.detach().cpu().numpy().tolist()
|
226 |
-
# Single DetDataSample
|
227 |
-
elif hasattr(det_result, 'pred_instances'):
|
228 |
-
inst = det_result.pred_instances
|
229 |
-
if hasattr(inst, 'bboxes'):
|
230 |
-
b = inst.bboxes
|
231 |
-
if hasattr(b, 'tensor'):
|
232 |
-
b = b.tensor
|
233 |
-
boxes = b.detach().cpu().numpy().tolist()
|
234 |
-
# MMDet 2.x: tuple of (bbox_result, segm_result)
|
235 |
-
elif isinstance(det_result, tuple) and len(det_result) >= 1:
|
236 |
-
bbox_result = det_result[0]
|
237 |
-
# bbox_result is list per class, each Nx5 [x1,y1,x2,y2,score]
|
238 |
-
if isinstance(bbox_result, (list, tuple)):
|
239 |
-
for arr in bbox_result:
|
240 |
-
try:
|
241 |
-
arr_np = np.array(arr)
|
242 |
-
if arr_np.ndim == 2 and arr_np.shape[1] >= 4:
|
243 |
-
boxes.extend(arr_np[:, :4].tolist())
|
244 |
-
except Exception:
|
245 |
-
continue
|
246 |
-
except Exception as e:
|
247 |
-
print(f"Failed to parse MMDet result for boxes: {e}")
|
248 |
-
return boxes
|
249 |
-
|
250 |
-
|
251 |
-
def _overlay_masks_on_image(image_pil, mask_list, alpha=0.4):
|
252 |
-
"""Overlay binary masks on an image with random colors."""
|
253 |
-
if image_pil is None or not mask_list:
|
254 |
-
return image_pil
|
255 |
-
img = np.array(image_pil.convert('RGB'))
|
256 |
-
overlay = img.copy()
|
257 |
-
for idx, m in enumerate(mask_list):
|
258 |
-
if m is None or 'mask' not in m or m['mask'] is None:
|
259 |
-
continue
|
260 |
-
mask = m['mask'].astype(bool)
|
261 |
-
color = np.random.RandomState(seed=idx + 1234).randint(0, 255, size=3)
|
262 |
-
overlay[mask] = (0.5 * overlay[mask] + 0.5 * color).astype(np.uint8)
|
263 |
-
blended = (alpha * overlay + (1 - alpha) * img).astype(np.uint8)
|
264 |
-
return Image.fromarray(blended)
|
265 |
-
|
266 |
-
|
267 |
-
def _mask_to_polygons(mask: np.ndarray):
|
268 |
-
"""Convert a binary mask (H,W) to a list of polygons ([[x,y], ...]) using OpenCV contours."""
|
269 |
-
try:
|
270 |
-
mask_u8 = (mask.astype(np.uint8) * 255)
|
271 |
-
contours, _ = cv2.findContours(mask_u8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
272 |
-
polygons = []
|
273 |
-
for cnt in contours:
|
274 |
-
if cnt is None or len(cnt) < 3:
|
275 |
-
continue
|
276 |
-
# Simplify contour slightly
|
277 |
-
epsilon = 0.002 * cv2.arcLength(cnt, True)
|
278 |
-
approx = cv2.approxPolyDP(cnt, epsilon, True)
|
279 |
-
poly = approx.reshape(-1, 2).tolist()
|
280 |
-
polygons.append(poly)
|
281 |
-
return polygons
|
282 |
-
except Exception as e:
|
283 |
-
print(f"_mask_to_polygons failed: {e}")
|
284 |
-
return []
|
285 |
-
|
286 |
-
|
287 |
-
def _find_largest_foreground_bbox(pil_img: Image.Image):
|
288 |
-
"""Heuristic: find largest foreground region bbox via Otsu threshold on grayscale.
|
289 |
-
Returns [x1, y1, x2, y2] or full-image bbox if none found."""
|
290 |
-
try:
|
291 |
-
img = np.array(pil_img.convert('RGB'))
|
292 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
293 |
-
# Otsu threshold (invert if needed by checking mean)
|
294 |
-
_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
295 |
-
# Assume foreground is darker; invert if threshold yields background as white majority
|
296 |
-
if th.mean() > 127:
|
297 |
-
th = 255 - th
|
298 |
-
# Morph close to connect regions
|
299 |
-
kernel = np.ones((5, 5), np.uint8)
|
300 |
-
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
|
301 |
-
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
302 |
-
if not contours:
|
303 |
-
W, H = pil_img.size
|
304 |
-
return [0, 0, W - 1, H - 1]
|
305 |
-
# Largest contour by area
|
306 |
-
cnt = max(contours, key=cv2.contourArea)
|
307 |
-
x, y, w, h = cv2.boundingRect(cnt)
|
308 |
-
# Pad a little
|
309 |
-
pad = int(0.02 * max(w, h))
|
310 |
-
x1 = max(0, x - pad)
|
311 |
-
y1 = max(0, y - pad)
|
312 |
-
x2 = min(img.shape[1] - 1, x + w + pad)
|
313 |
-
y2 = min(img.shape[0] - 1, y + h + pad)
|
314 |
-
return [x1, y1, x2, y2]
|
315 |
-
except Exception as e:
|
316 |
-
print(f"_find_largest_foreground_bbox failed: {e}")
|
317 |
-
W, H = pil_img.size
|
318 |
-
return [0, 0, W - 1, H - 1]
|
319 |
-
|
320 |
-
|
321 |
-
def _find_topk_foreground_bboxes(pil_img: Image.Image, max_regions: int = 20, min_area: int = 100):
|
322 |
-
"""Find top-K foreground bboxes via Otsu threshold + morphology. Returns list of [x1,y1,x2,y2]."""
|
323 |
-
try:
|
324 |
-
img = np.array(pil_img.convert('RGB'))
|
325 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
326 |
-
_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
327 |
-
if th.mean() > 127:
|
328 |
-
th = 255 - th
|
329 |
-
kernel = np.ones((3, 3), np.uint8)
|
330 |
-
th = cv2.morphologyEx(th, cv2.MORPH_OPEN, kernel, iterations=1)
|
331 |
-
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
|
332 |
-
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
333 |
-
if not contours:
|
334 |
-
return []
|
335 |
-
contours = sorted(contours, key=cv2.contourArea, reverse=True)
|
336 |
-
bboxes = []
|
337 |
-
H, W = img.shape[:2]
|
338 |
-
for cnt in contours:
|
339 |
-
area = cv2.contourArea(cnt)
|
340 |
-
if area < min_area:
|
341 |
-
continue
|
342 |
-
x, y, w, h = cv2.boundingRect(cnt)
|
343 |
-
# Filter very thin shapes
|
344 |
-
if w < 5 or h < 5:
|
345 |
-
continue
|
346 |
-
pad = int(0.01 * max(w, h))
|
347 |
-
x1 = max(0, x - pad)
|
348 |
-
y1 = max(0, y - pad)
|
349 |
-
x2 = min(W - 1, x + w + pad)
|
350 |
-
y2 = min(H - 1, y + h + pad)
|
351 |
-
bboxes.append([x1, y1, x2, y2])
|
352 |
-
if len(bboxes) >= max_regions:
|
353 |
-
break
|
354 |
-
return bboxes
|
355 |
-
except Exception as e:
|
356 |
-
print(f"_find_topk_foreground_bboxes failed: {e}")
|
357 |
-
return []
|
358 |
-
|
359 |
-
# Try to import mmdet for inference
|
360 |
-
try:
|
361 |
-
from mmdet.apis import init_detector, inference_detector
|
362 |
-
MM_DET_AVAILABLE = True
|
363 |
-
print("✅ MMDetection available for inference")
|
364 |
-
except ImportError as e:
|
365 |
-
print(f"⚠️ MMDetection import failed: {e}")
|
366 |
-
print("🔄 Attempting to install MMDetection dependencies...")
|
367 |
-
try:
|
368 |
-
import subprocess
|
369 |
-
import sys
|
370 |
-
|
371 |
-
# Use the working solution with mim install
|
372 |
-
print("🔄 Installing MMDetection dependencies with mim...")
|
373 |
-
|
374 |
-
# Install openmim if not already installed
|
375 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "openmim"])
|
376 |
-
|
377 |
-
# Install mmengine
|
378 |
-
subprocess.check_call([sys.executable, "-m", "mim", "install", "mmengine"])
|
379 |
-
|
380 |
-
# Install mmcv with mim (this handles compilation properly)
|
381 |
-
subprocess.check_call([sys.executable, "-m", "mim", "install", "mmcv==2.1.0"])
|
382 |
-
|
383 |
-
# Install mmdet
|
384 |
-
subprocess.check_call([sys.executable, "-m", "mim", "install", "mmdet"])
|
385 |
-
|
386 |
-
# Try importing again
|
387 |
-
from mmdet.apis import init_detector, inference_detector
|
388 |
-
MM_DET_AVAILABLE = True
|
389 |
-
print("✅ MMDetection installed and available for inference")
|
390 |
-
except Exception as install_error:
|
391 |
-
print(f"❌ Failed to install MMDetection: {install_error}")
|
392 |
-
MM_DET_AVAILABLE = False
|
393 |
-
|
394 |
-
# === Chart Type Classification (DocFigure) ===
|
395 |
-
print("🔄 Loading Chart Classification Model...")
|
396 |
-
|
397 |
-
# Chart type labels from DocFigure dataset (28 classes)
|
398 |
-
CHART_TYPE_LABELS = [
|
399 |
-
'Line graph', 'Natural image', 'Table', '3D object', 'Bar plot', 'Scatter plot',
|
400 |
-
'Medical image', 'Sketch', 'Geographic map', 'Flow chart', 'Heat map', 'Mask',
|
401 |
-
'Block diagram', 'Venn diagram', 'Confusion matrix', 'Histogram', 'Box plot',
|
402 |
-
'Vector plot', 'Pie chart', 'Surface plot', 'Algorithm', 'Contour plot',
|
403 |
-
'Tree diagram', 'Bubble chart', 'Polar plot', 'Area chart', 'Pareto chart', 'Radar chart'
|
404 |
-
]
|
405 |
-
|
406 |
-
try:
|
407 |
-
# Load the chart_type.pth model file from Hugging Face Hub
|
408 |
-
from huggingface_hub import hf_hub_download
|
409 |
-
import torch
|
410 |
-
from torchvision import transforms
|
411 |
-
|
412 |
-
print("🔄 Downloading chart_type.pth from Hugging Face Hub...")
|
413 |
-
chart_type_path = hf_hub_download(
|
414 |
-
repo_id="hanszhu/ChartTypeNet-DocFigure",
|
415 |
-
filename="chart_type.pth",
|
416 |
-
cache_dir="./models"
|
417 |
-
)
|
418 |
-
print(f"✅ Downloaded to: {chart_type_path}")
|
419 |
-
|
420 |
-
# Load the PyTorch model
|
421 |
-
loaded_data = torch.load(chart_type_path, map_location='cpu')
|
422 |
-
|
423 |
-
# Check if it's a state dict or a complete model
|
424 |
-
if isinstance(loaded_data, dict):
|
425 |
-
# Check if it's a checkpoint with model_state_dict
|
426 |
-
if "model_state_dict" in loaded_data:
|
427 |
-
print("🔄 Loading checkpoint, extracting model_state_dict...")
|
428 |
-
state_dict = loaded_data["model_state_dict"]
|
429 |
-
else:
|
430 |
-
# It's a direct state dict
|
431 |
-
print("🔄 Loading state dict, creating model architecture...")
|
432 |
-
state_dict = loaded_data
|
433 |
-
|
434 |
-
# Strip "backbone." prefix from state dict keys if present
|
435 |
-
cleaned_state_dict = {}
|
436 |
-
for key, value in state_dict.items():
|
437 |
-
if key.startswith("backbone."):
|
438 |
-
# Remove "backbone." prefix
|
439 |
-
new_key = key[9:]
|
440 |
-
cleaned_state_dict[new_key] = value
|
441 |
-
else:
|
442 |
-
cleaned_state_dict[key] = value
|
443 |
-
|
444 |
-
print(f"🔄 Cleaned state dict: {len(cleaned_state_dict)} keys")
|
445 |
-
|
446 |
-
# Create the model architecture
|
447 |
-
from torchvision.models import resnet50
|
448 |
-
chart_type_model = resnet50(pretrained=False)
|
449 |
-
|
450 |
-
# Create the correct classifier structure to match the state dict
|
451 |
-
import torch.nn as nn
|
452 |
-
in_features = chart_type_model.fc.in_features
|
453 |
-
dropout = nn.Dropout(0.5)
|
454 |
-
|
455 |
-
chart_type_model.fc = nn.Sequential(
|
456 |
-
nn.Linear(in_features, 512),
|
457 |
-
nn.ReLU(inplace=True),
|
458 |
-
dropout,
|
459 |
-
nn.Linear(512, 28)
|
460 |
-
)
|
461 |
-
|
462 |
-
# Load the cleaned state dict
|
463 |
-
chart_type_model.load_state_dict(cleaned_state_dict)
|
464 |
-
else:
|
465 |
-
# It's a complete model
|
466 |
-
chart_type_model = loaded_data
|
467 |
-
|
468 |
-
chart_type_model.eval()
|
469 |
-
|
470 |
-
# Create a simple processor for the model
|
471 |
-
chart_type_processor = transforms.Compose([
|
472 |
-
transforms.Resize((224, 224)),
|
473 |
-
transforms.ToTensor(),
|
474 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
475 |
-
])
|
476 |
-
|
477 |
-
CHART_TYPE_AVAILABLE = True
|
478 |
-
print("✅ Chart classification model loaded")
|
479 |
-
except Exception as e:
|
480 |
-
print(f"⚠️ Failed to load chart classification model: {e}")
|
481 |
-
import traceback
|
482 |
-
print("🔍 Full traceback:")
|
483 |
-
traceback.print_exc()
|
484 |
-
CHART_TYPE_AVAILABLE = False
|
485 |
-
|
486 |
-
# === Chart Element Detection (Cascade R-CNN) ===
|
487 |
-
element_model = None
|
488 |
-
datapoint_model = None
|
489 |
-
|
490 |
-
print(f"🔍 MM_DET_AVAILABLE: {MM_DET_AVAILABLE}")
|
491 |
-
|
492 |
-
if MM_DET_AVAILABLE:
|
493 |
-
# Check if config files exist
|
494 |
-
element_config = "models/chart_elementnet_swin.py"
|
495 |
-
point_config = "models/chart_pointnet_swin.py"
|
496 |
-
|
497 |
-
print(f"🔍 Checking config files...")
|
498 |
-
print(f"🔍 Element config exists: {os.path.exists(element_config)}")
|
499 |
-
print(f"🔍 Point config exists: {os.path.exists(point_config)}")
|
500 |
-
print(f"🔍 Current working directory: {os.getcwd()}")
|
501 |
-
print(f"🔍 Files in models directory: {os.listdir('models') if os.path.exists('models') else 'models directory not found'}")
|
502 |
-
|
503 |
-
try:
|
504 |
-
print("🔄 Loading ChartElementNet-MultiClass (Cascade R-CNN)...")
|
505 |
-
print(f"🔍 Config path: {element_config}")
|
506 |
-
print(f"🔍 Weights path: hanszhu/ChartElementNet-MultiClass")
|
507 |
-
print(f"🔍 About to call init_detector...")
|
508 |
-
|
509 |
-
# Download model from Hugging Face Hub
|
510 |
-
from huggingface_hub import hf_hub_download
|
511 |
-
print("🔄 Downloading ChartElementNet weights from Hugging Face Hub...")
|
512 |
-
element_checkpoint = hf_hub_download(
|
513 |
-
repo_id="hanszhu/ChartElementNet-MultiClass",
|
514 |
-
filename="chart_label+.pth",
|
515 |
-
cache_dir="./models"
|
516 |
-
)
|
517 |
-
print(f"✅ Downloaded to: {element_checkpoint}")
|
518 |
-
|
519 |
-
# Use local config with downloaded weights
|
520 |
-
element_model = init_detector(element_config, element_checkpoint, device="cpu")
|
521 |
-
print("✅ ChartElementNet loaded successfully")
|
522 |
-
except Exception as e:
|
523 |
-
print(f"❌ Failed to load ChartElementNet: {e}")
|
524 |
-
print(f"🔍 Error type: {type(e).__name__}")
|
525 |
-
print(f"🔍 Error details: {str(e)}")
|
526 |
-
import traceback
|
527 |
-
print("🔍 Full traceback:")
|
528 |
-
traceback.print_exc()
|
529 |
-
|
530 |
-
try:
|
531 |
-
print("🔄 Loading ChartPointNet-InstanceSeg (Mask R-CNN)...")
|
532 |
-
print(f"🔍 Config path: {point_config}")
|
533 |
-
print(f"🔍 Weights path: hanszhu/ChartPointNet-InstanceSeg")
|
534 |
-
print(f"🔍 About to call init_detector...")
|
535 |
-
|
536 |
-
# Download model from Hugging Face Hub
|
537 |
-
print("🔄 Downloading ChartPointNet weights from Hugging Face Hub...")
|
538 |
-
datapoint_checkpoint = hf_hub_download(
|
539 |
-
repo_id="hanszhu/ChartPointNet-InstanceSeg",
|
540 |
-
filename="chart_datapoint.pth",
|
541 |
-
cache_dir="./models"
|
542 |
-
)
|
543 |
-
print(f"✅ Downloaded to: {datapoint_checkpoint}")
|
544 |
-
|
545 |
-
# Use local config with downloaded weights
|
546 |
-
datapoint_model = init_detector(point_config, datapoint_checkpoint, device="cpu")
|
547 |
-
print("✅ ChartPointNet loaded successfully")
|
548 |
-
except Exception as e:
|
549 |
-
print(f"❌ Failed to load ChartPointNet: {e}")
|
550 |
-
print(f"🔍 Error type: {type(e).__name__}")
|
551 |
-
print(f"🔍 Error details: {str(e)}")
|
552 |
-
import traceback
|
553 |
-
print("🔍 Full traceback:")
|
554 |
-
traceback.print_exc()
|
555 |
-
else:
|
556 |
-
print("❌ MMDetection not available - cannot load custom models")
|
557 |
-
print(f"🔍 MM_DET_AVAILABLE was False")
|
558 |
-
|
559 |
-
print(f"🔍 Final model status:")
|
560 |
-
print(f"🔍 element_model: {element_model is not None}")
|
561 |
-
print(f"🔍 datapoint_model: {datapoint_model is not None}")
|
562 |
-
|
563 |
-
# === Main prediction function ===
|
564 |
-
def analyze(image):
|
565 |
-
"""
|
566 |
-
Analyze a chart image and return comprehensive results.
|
567 |
-
|
568 |
-
Args:
|
569 |
-
image: Input chart image (filepath string or PIL.Image)
|
570 |
-
|
571 |
-
Returns:
|
572 |
-
dict: Analysis results containing:
|
573 |
-
- chart_type_id (int): Numeric chart type identifier (0-27)
|
574 |
-
- chart_type_label (str): Human-readable chart type name
|
575 |
-
- element_result (str): Detected chart elements (titles, axes, legends, etc.)
|
576 |
-
- datapoint_result (str): Segmented data points and regions
|
577 |
-
- status (str): Processing status message
|
578 |
-
- processing_time (float): Time taken for analysis in seconds
|
579 |
-
"""
|
580 |
-
import time
|
581 |
-
from PIL import Image
|
582 |
-
|
583 |
-
start_time = time.time()
|
584 |
-
|
585 |
-
# Handle filepath input (convert to PIL Image)
|
586 |
-
if isinstance(image, str):
|
587 |
-
# It's a filepath, load the image
|
588 |
-
image = Image.open(image).convert("RGB")
|
589 |
-
elif image is None:
|
590 |
-
return {"error": "No image provided"}
|
591 |
-
|
592 |
-
# Ensure we have a PIL Image
|
593 |
-
if not isinstance(image, Image.Image):
|
594 |
-
return {"error": "Invalid image format"}
|
595 |
-
|
596 |
-
result = {
|
597 |
-
"chart_type_id": "Model not available",
|
598 |
-
"chart_type_label": "Model not available",
|
599 |
-
"element_result": "MMDetection models not available",
|
600 |
-
"datapoint_result": "MMDetection models not available",
|
601 |
-
"status": "Basic chart classification only",
|
602 |
-
"processing_time": 0.0,
|
603 |
-
"medsam": {"available": False}
|
604 |
-
}
|
605 |
-
|
606 |
-
# Chart Type Classification
|
607 |
-
if CHART_TYPE_AVAILABLE:
|
608 |
-
try:
|
609 |
-
# Preprocess image for PyTorch model
|
610 |
-
processed_image = chart_type_processor(image).unsqueeze(0) # Add batch dimension
|
611 |
-
|
612 |
-
# Get prediction
|
613 |
-
with torch.no_grad():
|
614 |
-
outputs = chart_type_model(processed_image)
|
615 |
-
# Handle different output formats
|
616 |
-
if isinstance(outputs, torch.Tensor):
|
617 |
-
logits = outputs
|
618 |
-
elif hasattr(outputs, 'logits'):
|
619 |
-
logits = outputs.logits
|
620 |
-
else:
|
621 |
-
logits = outputs
|
622 |
-
|
623 |
-
predicted_class = logits.argmax(dim=-1).item()
|
624 |
-
|
625 |
-
result["chart_type_id"] = predicted_class
|
626 |
-
result["chart_type_label"] = CHART_TYPE_LABELS[predicted_class] if 0 <= predicted_class < len(CHART_TYPE_LABELS) else f"Unknown ({predicted_class})"
|
627 |
-
result["status"] = "Chart classification completed"
|
628 |
-
|
629 |
-
except Exception as e:
|
630 |
-
result["chart_type_id"] = f"Error: {str(e)}"
|
631 |
-
result["chart_type_label"] = f"Error: {str(e)}"
|
632 |
-
result["status"] = "Error in chart classification"
|
633 |
-
|
634 |
-
# Chart Element Detection (Cascade R-CNN)
|
635 |
-
if element_model is not None:
|
636 |
-
try:
|
637 |
-
# Convert PIL image to numpy array for MMDetection
|
638 |
-
np_img = np.array(image.convert("RGB"))[:, :, ::-1] # PIL → BGR
|
639 |
-
|
640 |
-
element_result = inference_detector(element_model, np_img)
|
641 |
-
|
642 |
-
# Convert result to more API-friendly format
|
643 |
-
if isinstance(element_result, tuple):
|
644 |
-
bbox_result, segm_result = element_result
|
645 |
-
element_data = {
|
646 |
-
"bboxes": bbox_result.tolist() if hasattr(bbox_result, 'tolist') else str(bbox_result),
|
647 |
-
"segments": segm_result.tolist() if hasattr(segm_result, 'tolist') else str(segm_result)
|
648 |
-
}
|
649 |
-
else:
|
650 |
-
element_data = str(element_result)
|
651 |
-
|
652 |
-
result["element_result"] = element_data
|
653 |
-
result["status"] = "Chart classification + element detection completed"
|
654 |
-
except Exception as e:
|
655 |
-
result["element_result"] = f"Error: {str(e)}"
|
656 |
-
|
657 |
-
# Chart Data Point Segmentation (Mask R-CNN)
|
658 |
-
if datapoint_model is not None:
|
659 |
-
try:
|
660 |
-
# Convert PIL image to numpy array for MMDetection
|
661 |
-
np_img = np.array(image.convert("RGB"))[:, :, ::-1] # PIL → BGR
|
662 |
-
|
663 |
-
datapoint_result = inference_detector(datapoint_model, np_img)
|
664 |
-
|
665 |
-
# Convert result to more API-friendly format
|
666 |
-
if isinstance(datapoint_result, tuple):
|
667 |
-
bbox_result, segm_result = datapoint_result
|
668 |
-
datapoint_data = {
|
669 |
-
"bboxes": bbox_result.tolist() if hasattr(bbox_result, 'tolist') else str(bbox_result),
|
670 |
-
"segments": segm_result.tolist() if hasattr(segm_result, 'tolist') else str(segm_result)
|
671 |
-
}
|
672 |
-
else:
|
673 |
-
datapoint_data = str(datapoint_result)
|
674 |
-
|
675 |
-
result["datapoint_result"] = datapoint_data
|
676 |
-
result["status"] = "Full analysis completed"
|
677 |
-
except Exception as e:
|
678 |
-
result["datapoint_result"] = f"Error: {str(e)}"
|
679 |
-
|
680 |
-
# If predicted as medical image and MedSAM is available, include mask data (polygons)
|
681 |
-
try:
|
682 |
-
label_lower = str(result.get("chart_type_label", "")).strip().lower()
|
683 |
-
if label_lower == "medical image":
|
684 |
-
if _medsam.is_available():
|
685 |
-
# Do not run heuristics here. Prompts are required and handled in the UI then-chain.
|
686 |
-
# Indicate availability and that prompts are needed for segmentation.
|
687 |
-
result["medsam"] = {"available": True, "reason": "provide bbox/points prompts to generate segmentations"}
|
688 |
-
else:
|
689 |
-
# Not available; include reason
|
690 |
-
result["medsam"] = {"available": False, "reason": "segment_anything or checkpoint missing"}
|
691 |
-
except Exception as e:
|
692 |
-
print(f"MedSAM JSON augmentation failed: {e}")
|
693 |
-
|
694 |
-
result["processing_time"] = round(time.time() - start_time, 3)
|
695 |
-
return result
|
696 |
-
|
697 |
-
|
698 |
-
def analyze_with_medsam(base_result, image):
|
699 |
-
"""Auto-generate segmentations for medical images using SAM ViT-H if available,
|
700 |
-
otherwise fallback to MedSAM over top-K foreground boxes. Returns updated JSON and overlay image."""
|
701 |
-
try:
|
702 |
-
if not isinstance(base_result, dict):
|
703 |
-
return base_result, None
|
704 |
-
label = str(base_result.get("chart_type_label", "")).strip().lower()
|
705 |
-
if label != "medical image" or not _medsam.is_available():
|
706 |
-
return base_result, None
|
707 |
-
|
708 |
-
pil_img = Image.open(image).convert("RGB") if isinstance(image, str) else image
|
709 |
-
if pil_img is None:
|
710 |
-
return base_result, None
|
711 |
-
|
712 |
-
# Prepare embedding
|
713 |
-
img_path = image if isinstance(image, str) else None
|
714 |
-
if img_path is None:
|
715 |
-
tmp_path = "./_tmp_input_image.png"
|
716 |
-
pil_img.save(tmp_path)
|
717 |
-
img_path = tmp_path
|
718 |
-
_medsam.load_image(img_path)
|
719 |
-
|
720 |
-
segmentations = []
|
721 |
-
masks_for_overlay = []
|
722 |
-
|
723 |
-
# AUTO segmentation path
|
724 |
-
try:
|
725 |
-
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
726 |
-
import cv2 as _cv2
|
727 |
-
# If ViT-H checkpoint present, use SAM automatic mask generator (download if missing)
|
728 |
-
vit_h_ckpt = "models/sam_vit_h_4b8939.pth"
|
729 |
-
if not os.path.exists(vit_h_ckpt):
|
730 |
-
try:
|
731 |
-
from huggingface_hub import hf_hub_download
|
732 |
-
vit_h_ckpt = hf_hub_download(
|
733 |
-
repo_id="Aniketg6/SAM",
|
734 |
-
filename="sam_vit_h_4b8939.pth",
|
735 |
-
cache_dir="./models"
|
736 |
-
)
|
737 |
-
print(f"✅ Downloaded SAM ViT-H checkpoint to: {vit_h_ckpt}")
|
738 |
-
except Exception as dlh:
|
739 |
-
print(f"⚠ Failed to download SAM ViT-H checkpoint: {dlh}")
|
740 |
-
if os.path.exists(vit_h_ckpt):
|
741 |
-
img_bgr = _cv2.imread(img_path)
|
742 |
-
sam = sam_model_registry["vit_h"](checkpoint=vit_h_ckpt)
|
743 |
-
mask_generator = SamAutomaticMaskGenerator(sam)
|
744 |
-
masks = mask_generator.generate(img_bgr)
|
745 |
-
for m in masks:
|
746 |
-
seg = m.get('segmentation', None)
|
747 |
-
if seg is None:
|
748 |
-
continue
|
749 |
-
seg_u8 = seg.astype(np.uint8)
|
750 |
-
segmentations.append({
|
751 |
-
"mask": seg_u8.tolist(),
|
752 |
-
"confidence": float(m.get('stability_score', 1.0)),
|
753 |
-
"method": "sam_auto"
|
754 |
-
})
|
755 |
-
masks_for_overlay.append({"mask": seg_u8})
|
756 |
-
else:
|
757 |
-
# Fallback: derive candidate boxes and run MedSAM per box
|
758 |
-
cand_bboxes = _find_topk_foreground_bboxes(pil_img, max_regions=20, min_area=200)
|
759 |
-
for bbox in cand_bboxes:
|
760 |
-
m = _medsam.segment_with_box(bbox)
|
761 |
-
if m is None or not isinstance(m.get('mask'), np.ndarray):
|
762 |
-
continue
|
763 |
-
segmentations.append({
|
764 |
-
"mask": m['mask'].astype(np.uint8).tolist(),
|
765 |
-
"confidence": float(m.get('confidence', 1.0)),
|
766 |
-
"method": m.get("method", "medsam_box_auto")
|
767 |
-
})
|
768 |
-
masks_for_overlay.append(m)
|
769 |
-
except Exception as auto_e:
|
770 |
-
print(f"Automatic MedSAM segmentation failed: {auto_e}")
|
771 |
-
|
772 |
-
W, H = pil_img.size
|
773 |
-
base_result["medsam"] = {
|
774 |
-
"available": True,
|
775 |
-
"height": H,
|
776 |
-
"width": W,
|
777 |
-
"segmentations": segmentations,
|
778 |
-
"num_segments": len(segmentations)
|
779 |
-
}
|
780 |
-
|
781 |
-
overlay_img = _overlay_masks_on_image(pil_img, masks_for_overlay) if masks_for_overlay else None
|
782 |
-
return base_result, overlay_img
|
783 |
-
except Exception as e:
|
784 |
-
print(f"analyze_with_medsam failed: {e}")
|
785 |
-
return base_result, None
|
786 |
-
|
787 |
-
# === Gradio UI with API enhancements ===
|
788 |
-
# Create Blocks interface with explicit API name for stable API surface
|
789 |
-
with gr.Blocks(
|
790 |
-
title="📊 Dense Captioning Platform"
|
791 |
-
) as demo:
|
792 |
-
|
793 |
-
gr.Markdown("# 📊 Dense Captioning Platform")
|
794 |
-
gr.Markdown("""
|
795 |
-
**Comprehensive Chart Analysis API**
|
796 |
-
|
797 |
-
Upload a chart image to get:
|
798 |
-
- **Chart Type Classification**: Identifies the type of chart (line, bar, scatter, etc.)
|
799 |
-
- **Element Detection**: Detects chart elements like titles, axes, legends, data points
|
800 |
-
- **Data Point Segmentation**: Segments individual data points and regions
|
801 |
-
|
802 |
-
Masks will be automatically generated for medical images when supported.
|
803 |
-
|
804 |
-
**API Usage:**
|
805 |
-
```python
|
806 |
-
from gradio_client import Client, handle_file
|
807 |
-
|
808 |
-
client = Client("hanszhu/Dense-Captioning-Platform")
|
809 |
-
result = client.predict(
|
810 |
-
image=handle_file('path/to/your/chart.png'),
|
811 |
-
api_name="/predict"
|
812 |
-
)
|
813 |
-
print(result)
|
814 |
-
```
|
815 |
-
|
816 |
-
**Supported Chart Types:** Line graphs, Bar plots, Scatter plots, Pie charts, Heat maps, and 23+ more
|
817 |
-
""")
|
818 |
-
|
819 |
-
with gr.Row():
|
820 |
-
with gr.Column():
|
821 |
-
# Input
|
822 |
-
image_input = gr.Image(
|
823 |
-
type="filepath", # ✅ REQUIRED for gradio_client
|
824 |
-
label="Upload Chart Image",
|
825 |
-
height=400
|
826 |
-
)
|
827 |
-
|
828 |
-
# Analyze button (single)
|
829 |
-
analyze_btn = gr.Button(
|
830 |
-
"🔍 Analyze",
|
831 |
-
variant="primary",
|
832 |
-
size="lg"
|
833 |
-
)
|
834 |
-
|
835 |
-
with gr.Column():
|
836 |
-
# Output JSON
|
837 |
-
result_output = gr.JSON(
|
838 |
-
label="Analysis Results",
|
839 |
-
height=400
|
840 |
-
)
|
841 |
-
# Overlay image output (populated only for medical images)
|
842 |
-
overlay_output = gr.Image(
|
843 |
-
label="MedSAM Overlay (Medical images)",
|
844 |
-
height=400
|
845 |
-
)
|
846 |
-
|
847 |
-
# Single API endpoint for JSON
|
848 |
-
analyze_event = analyze_btn.click(
|
849 |
-
fn=analyze,
|
850 |
-
inputs=image_input,
|
851 |
-
outputs=result_output,
|
852 |
-
api_name="/predict" # ✅ Standard API name that gradio_client expects
|
853 |
-
)
|
854 |
-
|
855 |
-
# Automatic overlay generation step for medical images
|
856 |
-
analyze_event.then(
|
857 |
-
fn=analyze_with_medsam,
|
858 |
-
inputs=[result_output, image_input],
|
859 |
-
outputs=[result_output, overlay_output],
|
860 |
-
)
|
861 |
-
|
862 |
-
# Add some examples
|
863 |
-
gr.Examples(
|
864 |
-
examples=[
|
865 |
-
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"]
|
866 |
-
],
|
867 |
-
inputs=image_input,
|
868 |
-
label="Try with this example"
|
869 |
-
)
|
870 |
-
|
871 |
-
# Launch with API-friendly settings
|
872 |
-
if __name__ == "__main__":
|
873 |
-
launch_kwargs = {
|
874 |
-
"server_name": "0.0.0.0", # Allow external connections
|
875 |
-
"server_port": 7860,
|
876 |
-
"share": False, # Set to True if you want a public link
|
877 |
-
"show_error": True, # Show detailed errors for debugging
|
878 |
-
"quiet": False, # Show startup messages
|
879 |
-
"show_api": True # Enable API documentation
|
880 |
-
}
|
881 |
-
|
882 |
-
# Enable queue for gradio_client compatibility
|
883 |
-
demo.queue().launch(**launch_kwargs) # ✅ required for gradio_client to work
|
884 |
|
|
|
1 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
@app.get("/")
|
6 |
+
def greet_json():
|
7 |
+
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
requirements.txt
CHANGED
@@ -1,12 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
torchvision>=0.15.0
|
4 |
-
transformers>=4.30.0
|
5 |
-
Pillow>=9.0.0
|
6 |
-
numpy>=1.21.0
|
7 |
-
opencv-python>=4.8.0
|
8 |
-
huggingface-hub>=0.16.0
|
9 |
-
openmim
|
10 |
-
mmdet
|
11 |
-
mmengine
|
12 |
-
scikit-image>=0.21.0
|
|
|
1 |
+
fastapi==0.115.0
|
2 |
+
uvicorn[standard]==0.30.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|