# cascade_rcnn_r50_fpn_meta.py - Enhanced config with Swin Transformer backbone # # PROGRESSIVE LOSS STRATEGY: # - All 3 Cascade stages start with SmoothL1Loss for stable initial training # - At epoch 5, Stage 3 (final stage) switches to GIoULoss via ProgressiveLossHook # - Stage 1 & 2 remain SmoothL1Loss throughout training # - This ensures model stability before introducing more complex IoU-based losses # Custom imports - this registers our modules without polluting config namespace custom_imports = dict( imports=[ 'custom_models.custom_dataset', 'custom_models.register', 'custom_models.custom_hooks', 'custom_models.progressive_loss_hook', ], allow_failed_imports=False ) # Add to Python path import sys import os # Use a simpler path approach that doesn't rely on __file__ sys.path.insert(0, os.path.join(os.getcwd(), '..', '..')) # Custom Cascade model with coordinate handling for chart data model = dict( type='CustomCascadeWithMeta', # Use custom model with coordinate handling coordinate_standardization=dict( enabled=True, origin='bottom_left', # Match annotation creation coordinate system normalize=True, relative_to_plot=False, # Keep simple for now scale_to_axis=False # Keep simple for now ), data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), # ----- Swin Transformer Base (22K) Backbone + FPN ----- backbone=dict( type='SwinTransformer', embed_dims=128, # Swin Base embedding dimensions depths=[2, 2, 18, 2], # Swin Base depths num_heads=[4, 8, 16, 32], # Swin Base attention heads window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.3, # Slightly higher for more complex model patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict( type='Pretrained', checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth' ) ), neck=dict( type='FPN', in_channels=[128, 256, 512, 1024], # Swin Base: embed_dims * 2^(stage) out_channels=256, num_outs=6, start_level=0, add_extra_convs='on_input' ), # Enhanced RPN with smaller anchors for tiny objects + improved losses rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[1, 2, 4, 8], # Even smaller scales for tiny objects ratios=[0.5, 1.0, 2.0], # Multiple aspect ratios strides=[4, 8, 16, 32, 64, 128]), # Extended FPN strides bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), # Progressive Loss Strategy: Start with SmoothL1 for all 3 stages # Stage 3 (final stage) will switch to GIoU at epoch 5 via ProgressiveLossHook roi_head=dict( type='CascadeRoIHead', num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ # Stage 1: Always SmoothL1Loss (coarse detection) dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=21, # 21 enhanced categories bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), # Stage 2: Always SmoothL1Loss (intermediate refinement) dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=21, # 21 enhanced categories bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), # Stage 3: SmoothL1 → GIoU at epoch 5 (progressive switching) dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=21, # 21 enhanced categories bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.02, 0.02, 0.05, 0.05]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ]), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.8), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.4, neg_iou_thr=0.4, min_pos_iou=0.4, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False) ]), # Enhanced test configuration with soft-NMS and multi-scale support test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.005, # Even lower threshold to catch more classes nms=dict( type='soft_nms', # Soft-NMS for better small object detection iou_threshold=0.5, min_score=0.005, method='gaussian', sigma=0.5), max_per_img=500))) # Allow more detections # Dataset settings - using cleaned annotations dataset_type = 'ChartDataset' data_root = '' # Remove data_root duplication # Define the 21 chart element classes that match the annotations CLASSES = ( 'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label', 'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item', 'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line', 'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area' ) # Updated to use cleaned annotation files train_dataloader = dict( batch_size=2, # Increased back to 2 num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, ann_file='legend_data/annotations_JSON_cleaned/train_enriched.json', # Full path data_prefix=dict(img='legend_data/train/images/'), # Full path metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect filter_cfg=dict(filter_empty_gt=True, min_size=0, class_specific_min_sizes={ 'data-point': 16, # Back to 16x16 from 32x32 'data-bar': 16, # Back to 16x16 from 32x32 'tick-label': 16, # Back to 16x16 from 32x32 'x-tick-label': 16, # Back to 16x16 from 32x32 'y-tick-label': 16 # Back to 16x16 from 32x32 }), pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Higher resolution for tiny objects dict(type='RandomFlip', prob=0.5), dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds dict(type='PackDetInputs') ] ) ) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Full path data_prefix=dict(img='legend_data/train/images/'), # All images are in train/images metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect test_mode=True, pipeline=[ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Base resolution for validation dict(type='LoadAnnotations', with_bbox=True), dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] ) ) test_dataloader = val_dataloader # Enhanced evaluators with debugging val_evaluator = dict( type='CocoMetric', ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Using cleaned annotations metric='bbox', format_only=False, classwise=True, # Enable detailed per-class metrics table proposal_nums=(100, 300, 1000)) # More detailed AR metrics test_evaluator = val_evaluator # Add custom hooks for debugging empty results default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='DetVisualizationHook')) # Add NaN recovery hook for graceful handling like Faster R-CNN custom_hooks = [ dict(type='SkipBadSamplesHook', interval=1), # Skip samples with bad GT data dict(type='ChartTypeDistributionHook', interval=500), # Monitor class distribution dict(type='MissingImageReportHook', interval=1000), # Track missing images dict(type='NanRecoveryHook', # For logging & monitoring fallback_loss=1.0, max_consecutive_nans=100, log_interval=50), dict(type='ProgressiveLossHook', # Progressive loss switching switch_epoch=5, # Switch stage 3 to GIoU at epoch 5 target_loss_type='GIoULoss', # Use GIoU for stage 3 (final stage) loss_weight=1.0, # Keep same loss weight warmup_epochs=2, # Monitor for 2 epochs after switch monitor_stage_weights=True), # Log stage loss details ] # Training configuration - extended to 40 epochs for Swin Base on small objects train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # Optimizer with standard stable settings optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001), clip_grad=dict(max_norm=35.0, norm_type=2) ) # Extended learning rate schedule with cosine annealing for Swin Base param_scheduler = [ dict( type='LinearLR', start_factor=0.05, # 1e-4 / 2e-2 = 0.05 (warmup from 1e-4 to 2e-2) by_epoch=False, begin=0, end=1000), # 1k iteration warmup dict( type='CosineAnnealingLR', begin=0, end=40, # Match max_epochs by_epoch=True, T_max=40, eta_min=1e-6, # Minimum learning rate convert_to_iter_based=True) ] # Work directory work_dir = './work_dirs/cascade_rcnn_swin_base_40ep_cosine_fpn_meta' # Multi-scale test configuration (uncomment to enable) # img_scales = [(800, 500), (1600, 1000), (2400, 1500)] # 0.5x, 1.0x, 1.5x scales # tta_model = dict( # type='DetTTAModel', # tta_cfg=dict( # nms=dict(type='nms', iou_threshold=0.5), # max_per_img=100) # ) # Fresh start resume = False load_from = None