File size: 3,935 Bytes
e47538b
a434c81
 
e47538b
 
 
 
 
 
 
4c5b48d
e47538b
747c9ad
 
e47538b
747c9ad
 
 
 
 
 
 
1796d49
747c9ad
 
a434c81
 
 
 
 
 
 
 
 
 
e47538b
 
 
 
 
 
 
a434c81
4c5b48d
0226999
e47538b
cf6b359
e47538b
 
fe1f44f
 
 
 
 
 
 
c5a6d21
fe1f44f
c5a6d21
fe1f44f
c5a6d21
fe1f44f
c5a6d21
e47538b
af6c9c5
250e824
b2a4c2e
747c9ad
0081600
a434c81
 
 
99a4b22
56cdfa2
e47538b
 
6f7cb0d
e47538b
 
 
 
 
 
 
 
 
 
 
a434c81
99a4b22
e47538b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pandas as pd
from transformers import pipeline

import PIL
from PIL import Image
from PIL import ImageDraw
import gradio as gr
import torch
import easyocr
import omegaconf
import cv2

from vietocr.vietocr.tool.predictor import Predictor
from vietocr.vietocr.tool.config import Cfg

# Configure of VietOCR
config = Cfg.load_config_from_name('vgg_transformer')
# config = Cfg.load_config_from_file('vietocr/config.yml')
# config['weights'] = '/Users/bmd1905/Desktop/pretrain_ocr/vi00_vi01_transformer.pth'

config['cnn']['pretrained'] = True
config['predictor']['beamsearch'] = True
config['device'] = 'cpu' # mps

recognitor = Predictor(config)
classifier = pipeline("zero-shot-classification",
                      model="NDugar/debertav3-mnli-snli-anli")
def zero_shot(doc, candidates):
    given_labels = candidates.split(", ")
    dictionary = classifier(doc, given_labels)
    new_dict = dict (zip (dictionary['labels'], dictionary['scores']))
    max_label = max (new_dict, key=new_dict.get)
    max_score = max(dictionary['scores'])
    return max_label, max_score
    
def draw_boxes(image, bounds, color='yellow', width=2):
    draw = ImageDraw.Draw(image)
    for bound in bounds:
        p0, p1, p2, p3 = bound[0]
        draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
    return image

def inference(filepath, lang, labels):
    img = cv2.imread(filepath)
    width, height, _ = img.shape
    reader = easyocr.Reader(lang)
    bounds = reader.readtext(filepath)
    new_bounds=[]
    for (bbox, text, prob) in bounds:
        (tl, tr, br, bl) = bbox
        tl = (int(tl[0]), int(tl[1]))
        tr = (int(tr[0]), int(tr[1]))
        br = (int(br[0]), int(br[1]))
        bl = (int(bl[0]), int(bl[1]))

        min_x = min(tl[0], tr[0], br[0], bl[0])
        min_x = max(0, min_x)
        max_x = max(tl[0], tr[0], br[0], bl[0])
        max_x = min(width-1, max_x)
        min_y = min(tl[1], tr[1], br[1], bl[1])
        min_y = max(0, min_y)
        max_y = max(tl[1], tr[1], br[1], bl[1])
        max_y = min(height-1, max_y)
        # crop the region of interest (ROI)
        
        cropped_image = img[min_y:max_y,min_x:max_x] # crop the image
        cropped_image = Image.fromarray(cropped_image)
        out = recognitor.predict(cropped_image)
        print(out)
        max_label, max_score = zero_shot(out, labels)
        print(max_label)
        print(max_score)
        new_bounds.append((bbox,text, out, prob))
    im = PIL.Image.open(filepath)
    draw_boxes(im, bounds)
    im.save('result.jpg')
    return ['result.jpg', pd.DataFrame(new_bounds).iloc[: , 2:]]

title = 'EasyOCR'
description = 'Gradio demo for EasyOCR. EasyOCR demo supports 80+ languages.To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.'
article = "<p style='text-align: center'><a href='https://www.jaided.ai/easyocr/'>Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.</a> | <a href='https://github.com/JaidedAI/EasyOCR'>Github Repo</a></p>"
examples = [['english.png',['en']],['thai.jpg',['th']],['french.jpg',['fr', 'en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['korean.png',['ko', 'en']],['Hindi.jpeg',['hi', 'en']]]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
choices = [
    "vi"
]
gr.Interface(
    inference,
    [gr.inputs.Image(type='filepath', label='Input'),gr.inputs.CheckboxGroup(choices, type="value", default=['vi'], label='language'), gr.inputs.Textbox(label='Labels')],
    [gr.outputs.Image(type='pil', label='Output'), gr.outputs.Dataframe(type='pandas', headers=['easyOCR','vietOCR', 'confidence'])],
    title=title,
    description=description,
    article=article,
    css=css,
    enable_queue=True
    ).launch(debug=True)