File size: 3,067 Bytes
e47538b
 
 
 
 
 
 
 
 
 
747c9ad
 
e47538b
747c9ad
 
 
 
 
 
 
1796d49
747c9ad
 
e47538b
 
 
 
 
 
 
 
cf6b359
e47538b
cf6b359
e47538b
 
fe1f44f
 
 
 
 
 
 
 
 
 
e47538b
fe1f44f
747c9ad
0081600
99a4b22
56cdfa2
e47538b
 
6f7cb0d
e47538b
 
 
 
 
 
 
 
 
 
 
99a4b22
 
e47538b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pandas as pd
import PIL
from PIL import Image
from PIL import ImageDraw
import gradio as gr
import torch
import easyocr
import omegaconf


from vietocr.vietocr.tool.predictor import Predictor
from vietocr.vietocr.tool.config import Cfg

# Configure of VietOCR
config = Cfg.load_config_from_name('vgg_transformer')
# config = Cfg.load_config_from_file('vietocr/config.yml')
# config['weights'] = '/Users/bmd1905/Desktop/pretrain_ocr/vi00_vi01_transformer.pth'

config['cnn']['pretrained'] = True
config['predictor']['beamsearch'] = True
config['device'] = 'cpu' # mps

recognitor = Predictor(config)

def draw_boxes(image, bounds, color='yellow', width=2):
    draw = ImageDraw.Draw(image)
    for bound in bounds:
        p0, p1, p2, p3 = bound[0]
        draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
    return image

def inference(filepath, lang):
    reader = easyocr.Reader(lang)
    bounds = reader.readtext(filepath)
    new_bounds=[]
    for (bbox, text, prob) in bounds:
        (tl, tr, br, bl) = bbox
        tl = (int(tl[0]), int(tl[1]))
        tr = (int(tr[0]), int(tr[1]))
        br = (int(br[0]), int(br[1]))
        bl = (int(bl[0]), int(bl[1]))

        min_x = min(tl[0], tr[0], br[0], bl[0])
        max_x = max(tl[0], tr[0], br[0], bl[0])
        min_y = min(tl[1], tr[1], br[1], bl[1])
        max_y = max(tl[1], tr[1], br[1], bl[1])
        # crop the region of interest (ROI)
        cropped_image = Image.fromarray(img[min_y:max_y,min_x:max_x]) # crop the image
        out = recognitor.predict(cropped_image)
        print(out)
        new_bounds.append((bbox,text, out, prob))
    im = PIL.Image.open(filepath)
    draw_boxes(im, bounds)
    im.save('result.jpg')
    return ['result.jpg', pd.DataFrame(new_bounds).iloc[: , 2:]]

title = 'EasyOCR'
description = 'Gradio demo for EasyOCR. EasyOCR demo supports 80+ languages.To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.'
article = "<p style='text-align: center'><a href='https://www.jaided.ai/easyocr/'>Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.</a> | <a href='https://github.com/JaidedAI/EasyOCR'>Github Repo</a></p>"
examples = [['english.png',['en']],['thai.jpg',['th']],['french.jpg',['fr', 'en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['korean.png',['ko', 'en']],['Hindi.jpeg',['hi', 'en']]]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
choices = [
    "vi"
]
gr.Interface(
    inference,
    [gr.inputs.Image(type='filepath', label='Input'),gr.inputs.CheckboxGroup(choices, type="value", default=['vi'], label='language')],
    [gr.outputs.Image(type='pil', label='Output'), gr.outputs.Dataframe(type='pandas', headers=['easyOCR','vietOCR', 'confidence'])],
    title=title,
    description=description,
    article=article,
    css=css,
    enable_queue=True
    ).launch(debug=True)