Spaces:
Running
on
Zero
Running
on
Zero
update video depth
Browse files
infer.py
CHANGED
@@ -80,7 +80,18 @@ def infer_pipe_video(pipe, test_image, task_name, generator, device, latents=Non
|
|
80 |
else:
|
81 |
autocast_ctx = torch.autocast(pipe.device.type)
|
82 |
with autocast_ctx:
|
83 |
-
test_image = np.array(test_image).astype(np.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
85 |
test_image = test_image / 127.5 - 1.0
|
86 |
test_image = test_image.to(device)
|
|
|
80 |
else:
|
81 |
autocast_ctx = torch.autocast(pipe.device.type)
|
82 |
with autocast_ctx:
|
83 |
+
test_image = np.array(test_image).astype(np.float32)
|
84 |
+
if max(test_image.shape[:2]) > 1024:
|
85 |
+
# resize for a maximum size of 1024
|
86 |
+
scale = 1024 / max(test_image.shape[:2])
|
87 |
+
elif min(test_image.shape[:2]) < 384:
|
88 |
+
# resize for a minimum size of 384
|
89 |
+
scale = 384 / min(test_image.shape[:2])
|
90 |
+
else:
|
91 |
+
scale = 1.0
|
92 |
+
new_shape = (int(test_image.shape[1] * scale), int(test_image.shape[0] * scale))
|
93 |
+
test_image = cv2.resize(test_image, new_shape)
|
94 |
+
test_image = test_image.astype(np.float16)
|
95 |
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
96 |
test_image = test_image / 127.5 - 1.0
|
97 |
test_image = test_image.to(device)
|