File size: 7,649 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Image Classification & Regression

Image classification is a form of supervised learning where a model is trained to identify 
and categorize objects within images. AutoTrain simplifies the process, enabling you to 
train a state-of-the-art image classification model by simply uploading labeled example 
images.

Image regression/scoring is a form of supervised learning where a model is trained to predict a 
score or value for an image. AutoTrain simplifies the process, enabling you to train a 
state-of-the-art image scoring model by simply uploading labeled example images.


## Preparing your data

To ensure your image classification model trains effectively, follow these guidelines for preparing your data:


### Organizing Images For Image Classification


Prepare a zip file containing your categorized images. Each category should have its own 
subfolder named after the class it represents. For example, to differentiate between 
'cats' and 'dogs', your zip file structure should resemble the following:


```
cats_and_dogs.zip
β”œβ”€β”€ cats
β”‚   β”œβ”€β”€ cat.1.jpg
β”‚   β”œβ”€β”€ cat.2.jpg
β”‚   β”œβ”€β”€ cat.3.jpg
β”‚   └── ...
└── dogs
    β”œβ”€β”€ dog.1.jpg
    β”œβ”€β”€ dog.2.jpg
    β”œβ”€β”€ dog.3.jpg
    └── ...
```

You can also use a dataset from the Hugging Face Hub. Example dataset from Hugging Face Hub: [truepositive/hotdog_nothotdog](https://huggingface.co/datasets/truepositive/hotdog_nothotdog).


### Organizing Images for Image Regression/Scoring


Prepare a zip file containing your images and metadata.jsonl.


```
Archive.zip
β”œβ”€β”€ 0001.png
β”œβ”€β”€ 0002.png
β”œβ”€β”€ 0003.png
β”œβ”€β”€ .
β”œβ”€β”€ .
β”œβ”€β”€ .
└── metadata.jsonl
```

Example for `metadata.jsonl`:

```
{"file_name": "0001.png", "target": 0.5}
{"file_name": "0002.png", "target": 0.7}
{"file_name": "0003.png", "target": 0.3}
```

Please note that metadata.jsonl should contain the `file_name` and the `target` value for each image.

You can also use a dataset from the Hugging Face Hub. Example dataset from Hugging Face Hub: [abhishek/img-quality-full](https://huggingface.co/datasets/abhishek/img-quality-full).

### Image Requirements

- Format: Ensure all images are in JPEG, JPG, or PNG format.

- Quantity: Include at least 5 images per class to provide the model with sufficient examples for learning.

- Exclusivity: The zip file should exclusively contain folders named after the classes, 
and these folders should only contain relevant images. No additional files or nested 
folders should be included.


** Additional Tips** 

- Uniformity: While not required, having images of similar sizes and resolutions can help improve model performance.

- Variability: Include a variety of images for each class to encompass the range of 
appearances and contexts the model might encounter in real-world scenarios.

Some points to keep in mind:

- The zip file should contain multiple folders (the classes), each folder should contain images of a single class.
- The name of the folder should be the name of the class.
- The images must be jpeg, jpg or png.
- There should be at least 5 images per class.
- There must not be any other files in the zip file.
- There must not be any other folders inside the zip folder.

When train.zip is decompressed, it creates two folders: cats and dogs. these are the two categories for classification. The images for both categories are in their respective folders. You can have as many categories as you want.

## Column Mapping

For image classification, if you are using a `zip` dataset format, the column mapping should be default and should not be changed.

```yaml
data:
  .
  .
  .
  column_mapping:
    image_column: image
    target_column: label
```

For image regression, the column mapping must be as follows:

```yaml
data:
  .
  .
  .
  column_mapping:
    image_column: image
    target_column: target
```

For image regression, `metadata.jsonl` should contain the `file_name` and the `target` value for each image.

If you are using a dataset from the Hugging Face Hub, you should set appropriate column mappings based on the dataset.


## Training

### Local Training

To train the model locally, create a configuration file (config.yaml) with the following content:

```yaml
task: image_classification
base_model: google/vit-base-patch16-224
project_name: autotrain-cats-vs-dogs-finetuned
log: tensorboard
backend: local

data:
  path: cats_vs_dogs
  train_split: train
  valid_split: null
  column_mapping:
    image_column: image
    target_column: label

params:
  epochs: 2
  batch_size: 4
  lr: 2e-5
  optimizer: adamw_torch
  scheduler: linear
  gradient_accumulation: 1
  mixed_precision: fp16

hub:
  username: ${HF_USERNAME}
  token: ${HF_TOKEN}
  push_to_hub: true
```

Here, we are using `cats_and_dogs` dataset from Hugging Face Hub. The model is trained for 2 epochs with a batch size of 4 and a learning rate of `2e-5`. We are using the `adamw_torch` optimizer and the `linear` scheduler. We are also using mixed precision training with a gradient accumulation of 1.

In order to use a local dataset, you can change the `data` section to:

```yaml
data:
  path: data/
  train_split: train # this folder inside data/ will be used for training, it contains the images in subfolders.
  valid_split: valid # this folder inside data/ will be used for validation, it contains the images in subfolders. can also be null.
  column_mapping:
    image_column: image
    target_column: label
```

Similarly, for image regression, you can use the following configuration file:

```yaml
task: image_regression
base_model: microsoft/resnet-50
project_name: autotrain-img-quality-resnet50
log: tensorboard
backend: local

data:
  path: abhishek/img-quality-full
  train_split: train
  valid_split: null
  column_mapping:
    image_column: image
    target_column: target

params:
  epochs: 10
  batch_size: 8
  lr: 2e-3
  optimizer: adamw_torch
  scheduler: cosine
  gradient_accumulation: 1
  mixed_precision: fp16

hub:
  username: ${HF_USERNAME}
  token: ${HF_TOKEN}
  push_to_hub: true
```

To train the model, run the following command:

```bash
$ autotrain --config config.yaml
```

This will start the training process and save the model to the Hugging Face Hub after training is complete. In case you dont want to save the model to the hub, you can set `push_to_hub` to `false` in the configuration file.

### Training on Hugging Face Spaces

To train the model on Hugging Face Spaces, create a training space as described in `Quickstart` section.

An example UI for training an image scoring model on Hugging Face Spaces is shown below:

![llm-finetuning](https://raw.githubusercontent.com/huggingface/autotrain-advanced/main/static/img_reg_ui.png)

In this example, we are training an image scoring model using the `microsoft/resnet-50` model on the `abhishek/img-quality-full` dataset. 
We are training the model for 3 epochs with a batch size of 8 and a learning rate of `5e-5`. 
We are using the `adamw_torch` optimizer and the `linear` scheduler. 
We are also using mixed precision training with a gradient accumulation of 1.

Note how the column mapping has now been changed and `target` points to `quality_mos` column in the dataset.

To train the model, click on the `Start Training` button. This will start the training process and save the model to the Hugging Face Hub after training is complete.

## Parameters

### Image Classification Parameters

[[autodoc]] trainers.image_classification.params.ImageClassificationParams

### Image Regression Parameters

[[autodoc]] trainers.image_regression.params.ImageRegressionParams