File size: 35,941 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
import json
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, get_type_hints

from fastapi import APIRouter, Depends, HTTPException, Request, status
from fastapi.responses import JSONResponse
from huggingface_hub import HfApi, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from pydantic import BaseModel, create_model, model_validator

from autotrain import __version__, logger
from autotrain.app.params import HIDDEN_PARAMS, PARAMS, AppParams
from autotrain.app.utils import token_verification
from autotrain.project import AutoTrainProject
from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.extractive_question_answering.params import ExtractiveQuestionAnsweringParams
from autotrain.trainers.image_classification.params import ImageClassificationParams
from autotrain.trainers.image_regression.params import ImageRegressionParams
from autotrain.trainers.object_detection.params import ObjectDetectionParams
from autotrain.trainers.sent_transformers.params import SentenceTransformersParams
from autotrain.trainers.seq2seq.params import Seq2SeqParams
from autotrain.trainers.tabular.params import TabularParams
from autotrain.trainers.text_classification.params import TextClassificationParams
from autotrain.trainers.text_regression.params import TextRegressionParams
from autotrain.trainers.token_classification.params import TokenClassificationParams
from autotrain.trainers.vlm.params import VLMTrainingParams


FIELDS_TO_EXCLUDE = HIDDEN_PARAMS + ["push_to_hub"]


def create_api_base_model(base_class, class_name):
    """
    Creates a new Pydantic model based on a given base class and class name,
    excluding specified fields.

    Args:
        base_class (Type): The base Pydantic model class to extend.
        class_name (str): The name of the new model class to create.

    Returns:
        Type: A new Pydantic model class with the specified modifications.

    Notes:
        - The function uses type hints from the base class to define the new model's fields.
        - Certain fields are excluded from the new model based on the class name.
        - The function supports different sets of hidden parameters for different class names.
        - The new model's configuration is set to have no protected namespaces.
    """
    annotations = get_type_hints(base_class)
    if class_name in ("LLMSFTTrainingParamsAPI", "LLMRewardTrainingParamsAPI"):
        more_hidden_params = [
            "model_ref",
            "dpo_beta",
            "add_eos_token",
            "max_prompt_length",
            "max_completion_length",
        ]
    elif class_name == "LLMORPOTrainingParamsAPI":
        more_hidden_params = [
            "model_ref",
            "dpo_beta",
            "add_eos_token",
        ]
    elif class_name == "LLMDPOTrainingParamsAPI":
        more_hidden_params = [
            "add_eos_token",
        ]
    elif class_name == "LLMGenericTrainingParamsAPI":
        more_hidden_params = [
            "model_ref",
            "dpo_beta",
            "max_prompt_length",
            "max_completion_length",
        ]
    else:
        more_hidden_params = []
    _excluded = FIELDS_TO_EXCLUDE + more_hidden_params
    new_fields: Dict[str, Tuple[Any, Any]] = {}
    for name, field in base_class.__fields__.items():
        if name not in _excluded:
            field_type = annotations[name]
            if field.default is not None:
                field_default = field.default
            elif field.default_factory is not None:
                field_default = field.default_factory
            else:
                field_default = None
            new_fields[name] = (field_type, field_default)
    return create_model(
        class_name,
        **{key: (value[0], value[1]) for key, value in new_fields.items()},
        __config__=type("Config", (), {"protected_namespaces": ()}),
    )


LLMSFTTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMSFTTrainingParamsAPI")
LLMDPOTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMDPOTrainingParamsAPI")
LLMORPOTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMORPOTrainingParamsAPI")
LLMGenericTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMGenericTrainingParamsAPI")
LLMRewardTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMRewardTrainingParamsAPI")
ImageClassificationParamsAPI = create_api_base_model(ImageClassificationParams, "ImageClassificationParamsAPI")
Seq2SeqParamsAPI = create_api_base_model(Seq2SeqParams, "Seq2SeqParamsAPI")
TabularClassificationParamsAPI = create_api_base_model(TabularParams, "TabularClassificationParamsAPI")
TabularRegressionParamsAPI = create_api_base_model(TabularParams, "TabularRegressionParamsAPI")
TextClassificationParamsAPI = create_api_base_model(TextClassificationParams, "TextClassificationParamsAPI")
TextRegressionParamsAPI = create_api_base_model(TextRegressionParams, "TextRegressionParamsAPI")
TokenClassificationParamsAPI = create_api_base_model(TokenClassificationParams, "TokenClassificationParamsAPI")
SentenceTransformersParamsAPI = create_api_base_model(SentenceTransformersParams, "SentenceTransformersParamsAPI")
ImageRegressionParamsAPI = create_api_base_model(ImageRegressionParams, "ImageRegressionParamsAPI")
VLMTrainingParamsAPI = create_api_base_model(VLMTrainingParams, "VLMTrainingParamsAPI")
ExtractiveQuestionAnsweringParamsAPI = create_api_base_model(
    ExtractiveQuestionAnsweringParams, "ExtractiveQuestionAnsweringParamsAPI"
)
ObjectDetectionParamsAPI = create_api_base_model(ObjectDetectionParams, "ObjectDetectionParamsAPI")


class LLMSFTColumnMapping(BaseModel):
    text_column: str


class LLMDPOColumnMapping(BaseModel):
    text_column: str
    rejected_text_column: str
    prompt_text_column: str


class LLMORPOColumnMapping(BaseModel):
    text_column: str
    rejected_text_column: str
    prompt_text_column: str


class LLMGenericColumnMapping(BaseModel):
    text_column: str


class LLMRewardColumnMapping(BaseModel):
    text_column: str
    rejected_text_column: str


class ImageClassificationColumnMapping(BaseModel):
    image_column: str
    target_column: str


class ImageRegressionColumnMapping(BaseModel):
    image_column: str
    target_column: str


class Seq2SeqColumnMapping(BaseModel):
    text_column: str
    target_column: str


class TabularClassificationColumnMapping(BaseModel):
    id_column: str
    target_columns: List[str]


class TabularRegressionColumnMapping(BaseModel):
    id_column: str
    target_columns: List[str]


class TextClassificationColumnMapping(BaseModel):
    text_column: str
    target_column: str


class TextRegressionColumnMapping(BaseModel):
    text_column: str
    target_column: str


class TokenClassificationColumnMapping(BaseModel):
    tokens_column: str
    tags_column: str


class STPairColumnMapping(BaseModel):
    sentence1_column: str
    sentence2_column: str


class STPairClassColumnMapping(BaseModel):
    sentence1_column: str
    sentence2_column: str
    target_column: str


class STPairScoreColumnMapping(BaseModel):
    sentence1_column: str
    sentence2_column: str
    target_column: str


class STTripletColumnMapping(BaseModel):
    sentence1_column: str
    sentence2_column: str
    sentence3_column: str


class STQAColumnMapping(BaseModel):
    sentence1_column: str
    sentence2_column: str


class VLMColumnMapping(BaseModel):
    image_column: str
    text_column: str
    prompt_text_column: str


class ExtractiveQuestionAnsweringColumnMapping(BaseModel):
    text_column: str
    question_column: str
    answer_column: str


class ObjectDetectionColumnMapping(BaseModel):
    image_column: str
    objects_column: str


class APICreateProjectModel(BaseModel):
    """
    APICreateProjectModel is a Pydantic model that defines the schema for creating a project.

    Attributes:
        project_name (str): The name of the project.
        task (Literal): The type of task for the project. Supported tasks include various LLM tasks,
            image classification, seq2seq, token classification, text classification,
            text regression, tabular classification, tabular regression, image regression, VLM tasks,
            and extractive question answering.
        base_model (str): The base model to be used for the project.
        hardware (Literal): The type of hardware to be used for the project. Supported hardware options
            include various configurations of spaces and local.
        params (Union): The training parameters for the project. The type of parameters depends on the
            task selected.
        username (str): The username of the person creating the project.
        column_mapping (Optional[Union]): The column mapping for the project. The type of column mapping
            depends on the task selected.
        hub_dataset (str): The dataset to be used for the project.
        train_split (str): The training split of the dataset.
        valid_split (Optional[str]): The validation split of the dataset.

    Methods:
        validate_column_mapping(cls, values): Validates the column mapping based on the task selected.
        validate_params(cls, values): Validates the training parameters based on the task selected.
    """

    project_name: str
    task: Literal[
        "llm:sft",
        "llm:dpo",
        "llm:orpo",
        "llm:generic",
        "llm:reward",
        "st:pair",
        "st:pair_class",
        "st:pair_score",
        "st:triplet",
        "st:qa",
        "image-classification",
        "seq2seq",
        "token-classification",
        "text-classification",
        "text-regression",
        "tabular-classification",
        "tabular-regression",
        "image-regression",
        "vlm:captioning",
        "vlm:vqa",
        "extractive-question-answering",
        "image-object-detection",
    ]
    base_model: str
    hardware: Literal[
        "spaces-a10g-large",
        "spaces-a10g-small",
        "spaces-a100-large",
        "spaces-t4-medium",
        "spaces-t4-small",
        "spaces-cpu-upgrade",
        "spaces-cpu-basic",
        "spaces-l4x1",
        "spaces-l4x4",
        "spaces-l40sx1",
        "spaces-l40sx4",
        "spaces-l40sx8",
        "spaces-a10g-largex2",
        "spaces-a10g-largex4",
        # "local",
    ]
    params: Union[
        LLMSFTTrainingParamsAPI,
        LLMDPOTrainingParamsAPI,
        LLMORPOTrainingParamsAPI,
        LLMGenericTrainingParamsAPI,
        LLMRewardTrainingParamsAPI,
        SentenceTransformersParamsAPI,
        ImageClassificationParamsAPI,
        Seq2SeqParamsAPI,
        TabularClassificationParamsAPI,
        TabularRegressionParamsAPI,
        TextClassificationParamsAPI,
        TextRegressionParamsAPI,
        TokenClassificationParamsAPI,
        ImageRegressionParamsAPI,
        VLMTrainingParamsAPI,
        ExtractiveQuestionAnsweringParamsAPI,
        ObjectDetectionParamsAPI,
    ]
    username: str
    column_mapping: Optional[
        Union[
            LLMSFTColumnMapping,
            LLMDPOColumnMapping,
            LLMORPOColumnMapping,
            LLMGenericColumnMapping,
            LLMRewardColumnMapping,
            ImageClassificationColumnMapping,
            Seq2SeqColumnMapping,
            TabularClassificationColumnMapping,
            TabularRegressionColumnMapping,
            TextClassificationColumnMapping,
            TextRegressionColumnMapping,
            TokenClassificationColumnMapping,
            STPairColumnMapping,
            STPairClassColumnMapping,
            STPairScoreColumnMapping,
            STTripletColumnMapping,
            STQAColumnMapping,
            ImageRegressionColumnMapping,
            VLMColumnMapping,
            ExtractiveQuestionAnsweringColumnMapping,
            ObjectDetectionColumnMapping,
        ]
    ] = None
    hub_dataset: str
    train_split: str
    valid_split: Optional[str] = None

    @model_validator(mode="before")
    @classmethod
    def validate_column_mapping(cls, values):
        if values.get("task") == "llm:sft":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for llm:sft")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for llm:sft")
            values["column_mapping"] = LLMSFTColumnMapping(**values["column_mapping"])
        elif values.get("task") == "llm:dpo":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for llm:dpo")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for llm:dpo")
            if not values.get("column_mapping").get("rejected_text_column"):
                raise ValueError("rejected_text_column is required for llm:dpo")
            if not values.get("column_mapping").get("prompt_text_column"):
                raise ValueError("prompt_text_column is required for llm:dpo")
            values["column_mapping"] = LLMDPOColumnMapping(**values["column_mapping"])
        elif values.get("task") == "llm:orpo":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for llm:orpo")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for llm:orpo")
            if not values.get("column_mapping").get("rejected_text_column"):
                raise ValueError("rejected_text_column is required for llm:orpo")
            if not values.get("column_mapping").get("prompt_text_column"):
                raise ValueError("prompt_text_column is required for llm:orpo")
            values["column_mapping"] = LLMORPOColumnMapping(**values["column_mapping"])
        elif values.get("task") == "llm:generic":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for llm:generic")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for llm:generic")
            values["column_mapping"] = LLMGenericColumnMapping(**values["column_mapping"])
        elif values.get("task") == "llm:reward":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for llm:reward")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for llm:reward")
            if not values.get("column_mapping").get("rejected_text_column"):
                raise ValueError("rejected_text_column is required for llm:reward")
            values["column_mapping"] = LLMRewardColumnMapping(**values["column_mapping"])
        elif values.get("task") == "seq2seq":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for seq2seq")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for seq2seq")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for seq2seq")
            values["column_mapping"] = Seq2SeqColumnMapping(**values["column_mapping"])
        elif values.get("task") == "image-classification":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for image-classification")
            if not values.get("column_mapping").get("image_column"):
                raise ValueError("image_column is required for image-classification")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for image-classification")
            values["column_mapping"] = ImageClassificationColumnMapping(**values["column_mapping"])
        elif values.get("task") == "tabular-classification":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for tabular-classification")
            if not values.get("column_mapping").get("id_column"):
                raise ValueError("id_column is required for tabular-classification")
            if not values.get("column_mapping").get("target_columns"):
                raise ValueError("target_columns is required for tabular-classification")
            values["column_mapping"] = TabularClassificationColumnMapping(**values["column_mapping"])
        elif values.get("task") == "tabular-regression":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for tabular-regression")
            if not values.get("column_mapping").get("id_column"):
                raise ValueError("id_column is required for tabular-regression")
            if not values.get("column_mapping").get("target_columns"):
                raise ValueError("target_columns is required for tabular-regression")
            values["column_mapping"] = TabularRegressionColumnMapping(**values["column_mapping"])
        elif values.get("task") == "text-classification":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for text-classification")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for text-classification")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for text-classification")
            values["column_mapping"] = TextClassificationColumnMapping(**values["column_mapping"])
        elif values.get("task") == "text-regression":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for text-regression")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for text-regression")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for text-regression")
            values["column_mapping"] = TextRegressionColumnMapping(**values["column_mapping"])
        elif values.get("task") == "token-classification":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for token-classification")
            if not values.get("column_mapping").get("tokens_column"):
                raise ValueError("tokens_column is required for token-classification")
            if not values.get("column_mapping").get("tags_column"):
                raise ValueError("tags_column is required for token-classification")
            values["column_mapping"] = TokenClassificationColumnMapping(**values["column_mapping"])
        elif values.get("task") == "st:pair":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for st:pair")
            if not values.get("column_mapping").get("sentence1_column"):
                raise ValueError("sentence1_column is required for st:pair")
            if not values.get("column_mapping").get("sentence2_column"):
                raise ValueError("sentence2_column is required for st:pair")
            values["column_mapping"] = STPairColumnMapping(**values["column_mapping"])
        elif values.get("task") == "st:pair_class":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for st:pair_class")
            if not values.get("column_mapping").get("sentence1_column"):
                raise ValueError("sentence1_column is required for st:pair_class")
            if not values.get("column_mapping").get("sentence2_column"):
                raise ValueError("sentence2_column is required for st:pair_class")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for st:pair_class")
            values["column_mapping"] = STPairClassColumnMapping(**values["column_mapping"])
        elif values.get("task") == "st:pair_score":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for st:pair_score")
            if not values.get("column_mapping").get("sentence1_column"):
                raise ValueError("sentence1_column is required for st:pair_score")
            if not values.get("column_mapping").get("sentence2_column"):
                raise ValueError("sentence2_column is required for st:pair_score")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for st:pair_score")
            values["column_mapping"] = STPairScoreColumnMapping(**values["column_mapping"])
        elif values.get("task") == "st:triplet":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for st:triplet")
            if not values.get("column_mapping").get("sentence1_column"):
                raise ValueError("sentence1_column is required for st:triplet")
            if not values.get("column_mapping").get("sentence2_column"):
                raise ValueError("sentence2_column is required for st:triplet")
            if not values.get("column_mapping").get("sentence3_column"):
                raise ValueError("sentence3_column is required for st:triplet")
            values["column_mapping"] = STTripletColumnMapping(**values["column_mapping"])
        elif values.get("task") == "st:qa":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for st:qa")
            if not values.get("column_mapping").get("sentence1_column"):
                raise ValueError("sentence1_column is required for st:qa")
            if not values.get("column_mapping").get("sentence2_column"):
                raise ValueError("sentence2_column is required for st:qa")
            values["column_mapping"] = STQAColumnMapping(**values["column_mapping"])
        elif values.get("task") == "image-regression":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for image-regression")
            if not values.get("column_mapping").get("image_column"):
                raise ValueError("image_column is required for image-regression")
            if not values.get("column_mapping").get("target_column"):
                raise ValueError("target_column is required for image-regression")
            values["column_mapping"] = ImageRegressionColumnMapping(**values["column_mapping"])
        elif values.get("task") == "vlm:captioning":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for vlm:captioning")
            if not values.get("column_mapping").get("image_column"):
                raise ValueError("image_column is required for vlm:captioning")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for vlm:captioning")
            if not values.get("column_mapping").get("prompt_text_column"):
                raise ValueError("prompt_text_column is required for vlm:captioning")
            values["column_mapping"] = VLMColumnMapping(**values["column_mapping"])
        elif values.get("task") == "vlm:vqa":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for vlm:vqa")
            if not values.get("column_mapping").get("image_column"):
                raise ValueError("image_column is required for vlm:vqa")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for vlm:vqa")
            if not values.get("column_mapping").get("prompt_text_column"):
                raise ValueError("prompt_text_column is required for vlm:vqa")
            values["column_mapping"] = VLMColumnMapping(**values["column_mapping"])
        elif values.get("task") == "extractive-question-answering":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for extractive-question-answering")
            if not values.get("column_mapping").get("text_column"):
                raise ValueError("text_column is required for extractive-question-answering")
            if not values.get("column_mapping").get("question_column"):
                raise ValueError("question_column is required for extractive-question-answering")
            if not values.get("column_mapping").get("answer_column"):
                raise ValueError("answer_column is required for extractive-question-answering")
            values["column_mapping"] = ExtractiveQuestionAnsweringColumnMapping(**values["column_mapping"])
        elif values.get("task") == "image-object-detection":
            if not values.get("column_mapping"):
                raise ValueError("column_mapping is required for image-object-detection")
            if not values.get("column_mapping").get("image_column"):
                raise ValueError("image_column is required for image-object-detection")
            if not values.get("column_mapping").get("objects_column"):
                raise ValueError("objects_column is required for image-object-detection")
            values["column_mapping"] = ObjectDetectionColumnMapping(**values["column_mapping"])
        return values

    @model_validator(mode="before")
    @classmethod
    def validate_params(cls, values):
        if values.get("task") == "llm:sft":
            values["params"] = LLMSFTTrainingParamsAPI(**values["params"])
        elif values.get("task") == "llm:dpo":
            values["params"] = LLMDPOTrainingParamsAPI(**values["params"])
        elif values.get("task") == "llm:orpo":
            values["params"] = LLMORPOTrainingParamsAPI(**values["params"])
        elif values.get("task") == "llm:generic":
            values["params"] = LLMGenericTrainingParamsAPI(**values["params"])
        elif values.get("task") == "llm:reward":
            values["params"] = LLMRewardTrainingParamsAPI(**values["params"])
        elif values.get("task") == "seq2seq":
            values["params"] = Seq2SeqParamsAPI(**values["params"])
        elif values.get("task") == "image-classification":
            values["params"] = ImageClassificationParamsAPI(**values["params"])
        elif values.get("task") == "tabular-classification":
            values["params"] = TabularClassificationParamsAPI(**values["params"])
        elif values.get("task") == "tabular-regression":
            values["params"] = TabularRegressionParamsAPI(**values["params"])
        elif values.get("task") == "text-classification":
            values["params"] = TextClassificationParamsAPI(**values["params"])
        elif values.get("task") == "text-regression":
            values["params"] = TextRegressionParamsAPI(**values["params"])
        elif values.get("task") == "token-classification":
            values["params"] = TokenClassificationParamsAPI(**values["params"])
        elif values.get("task").startswith("st:"):
            values["params"] = SentenceTransformersParamsAPI(**values["params"])
        elif values.get("task") == "image-regression":
            values["params"] = ImageRegressionParamsAPI(**values["params"])
        elif values.get("task").startswith("vlm:"):
            values["params"] = VLMTrainingParamsAPI(**values["params"])
        elif values.get("task") == "extractive-question-answering":
            values["params"] = ExtractiveQuestionAnsweringParamsAPI(**values["params"])
        elif values.get("task") == "image-object-detection":
            values["params"] = ObjectDetectionParamsAPI(**values["params"])
        return values


class JobIDModel(BaseModel):
    jid: str


api_router = APIRouter()


def api_auth(request: Request):
    """
    Authenticates the API request using a Bearer token.

    Args:
        request (Request): The incoming HTTP request object.

    Returns:
        str: The verified Bearer token if authentication is successful.

    Raises:
        HTTPException: If the token is invalid, expired, or missing.
    """
    authorization = request.headers.get("Authorization")
    if authorization:
        schema, _, token = authorization.partition(" ")
        if schema.lower() == "bearer":
            token = token.strip()
            try:
                _ = token_verification(token=token)
                return token
            except Exception as e:
                logger.error(f"Failed to verify token: {e}")
                raise HTTPException(
                    status_code=status.HTTP_401_UNAUTHORIZED,
                    detail="Invalid or expired token: Bearer",
                )
    raise HTTPException(
        status_code=status.HTTP_401_UNAUTHORIZED,
        detail="Invalid or expired token",
    )


@api_router.post("/create_project", response_class=JSONResponse)
async def api_create_project(project: APICreateProjectModel, token: bool = Depends(api_auth)):
    """
    Asynchronously creates a new project based on the provided parameters.

    Args:
        project (APICreateProjectModel): The model containing the project details and parameters.
        token (bool, optional): The authentication token. Defaults to Depends(api_auth).

    Returns:
        dict: A dictionary containing a success message, the job ID of the created project, and a success status.

    Raises:
        HTTPException: If there is an error during project creation.

    Notes:
        - The function determines the hardware type based on the project hardware attribute.
        - It logs the provided parameters and column mapping.
        - It sets the appropriate parameters based on the task type.
        - It updates the parameters with the provided ones and creates an AppParams instance.
        - The function then creates an AutoTrainProject instance and initiates the project creation process.
    """
    provided_params = project.params.model_dump()
    if project.hardware == "local":
        hardware = "local-ui"  # local-ui has wait=False
    else:
        hardware = project.hardware

    logger.info(provided_params)
    logger.info(project.column_mapping)

    task = project.task
    if task.startswith("llm"):
        params = PARAMS["llm"]
        trainer = task.split(":")[1]
        params.update({"trainer": trainer})
    elif task.startswith("st:"):
        params = PARAMS["st"]
        trainer = task.split(":")[1]
        params.update({"trainer": trainer})
    elif task.startswith("vlm:"):
        params = PARAMS["vlm"]
        trainer = task.split(":")[1]
        params.update({"trainer": trainer})
    elif task.startswith("tabular"):
        params = PARAMS["tabular"]
    else:
        params = PARAMS[task]

    params.update(provided_params)

    app_params = AppParams(
        job_params_json=json.dumps(params),
        token=token,
        project_name=project.project_name,
        username=project.username,
        task=task,
        data_path=project.hub_dataset,
        base_model=project.base_model,
        column_mapping=project.column_mapping.model_dump() if project.column_mapping else None,
        using_hub_dataset=True,
        train_split=project.train_split,
        valid_split=project.valid_split,
        api=True,
    )
    params = app_params.munge()
    project = AutoTrainProject(params=params, backend=hardware)
    job_id = project.create()
    return {"message": "Project created", "job_id": job_id, "success": True}


@api_router.get("/version", response_class=JSONResponse)
async def api_version():
    """
    Returns the current version of the API.

    This asynchronous function retrieves the version of the API from the
    __version__ variable and returns it in a dictionary.

    Returns:
        dict: A dictionary containing the API version.
    """
    return {"version": __version__}


@api_router.post("/stop_training", response_class=JSONResponse)
async def api_stop_training(job: JobIDModel, token: bool = Depends(api_auth)):
    """
    Stops the training job with the given job ID.

    This asynchronous function pauses the training job identified by the provided job ID.
    It uses the Hugging Face API to pause the space associated with the job.

    Args:
        job (JobIDModel): The job model containing the job ID.
        token (bool, optional): The authentication token, provided by dependency injection.

    Returns:
        dict: A dictionary containing a message and a success flag. If the training job
        was successfully stopped, the message indicates success and the success flag is True.
        If there was an error, the message contains the error details and the success flag is False.

    Raises:
        Exception: If there is an error while attempting to stop the training job.
    """
    hf_api = HfApi(token=token)
    job_id = job.jid
    try:
        hf_api.pause_space(repo_id=job_id)
    except Exception as e:
        logger.error(f"Failed to stop training: {e}")
        return {"message": f"Failed to stop training for {job_id}: {e}", "success": False}
    return {"message": f"Training stopped for {job_id}", "success": True}


@api_router.post("/logs", response_class=JSONResponse)
async def api_logs(job: JobIDModel, token: bool = Depends(api_auth)):
    """
    Fetch logs for a given job.

    This endpoint retrieves logs for a specified job by its job ID. It first obtains a JWT token
    to authenticate the request and then fetches the logs from the Hugging Face API.

    Args:
        job (JobIDModel): The job model containing the job ID.
        token (bool, optional): Dependency injection for API authentication. Defaults to Depends(api_auth).

    Returns:
        JSONResponse: A JSON response containing the logs, success status, and a message.

    Raises:
        Exception: If there is an error fetching the logs, the exception message is returned in the response.
    """
    job_id = job.jid
    jwt_url = f"{constants.ENDPOINT}/api/spaces/{job_id}/jwt"
    response = get_session().get(jwt_url, headers=build_hf_headers(token=token))
    hf_raise_for_status(response)
    jwt_token = response.json()["token"]  # works for 24h (see "exp" field)

    # fetch the logs
    logs_url = f"https://api.hf.space/v1/{job_id}/logs/run"

    _logs = []
    try:
        with get_session().get(
            logs_url, headers=build_hf_headers(token=jwt_token), stream=True, timeout=3
        ) as response:
            hf_raise_for_status(response)
            for line in response.iter_lines():
                if not line.startswith(b"data: "):
                    continue
                line_data = line[len(b"data: ") :]
                try:
                    event = json.loads(line_data.decode())
                except json.JSONDecodeError:
                    continue  # ignore (for example, empty lines or `b': keep-alive'`)
                _logs.append((event["timestamp"], event["data"]))

        _logs = "\n".join([f"{timestamp}: {data}" for timestamp, data in _logs])
        return {"logs": _logs, "success": True, "message": "Logs fetched successfully"}
    except Exception as e:
        if "Read timed out" in str(e):
            _logs = "\n".join([f"{timestamp}: {data}" for timestamp, data in _logs])
            return {"logs": _logs, "success": True, "message": "Logs fetched successfully"}
        return {"logs": str(e), "success": False, "message": "Failed to fetch logs"}