Spaces:
Sleeping
Sleeping
File size: 35,941 Bytes
33d4721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
import json
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, get_type_hints
from fastapi import APIRouter, Depends, HTTPException, Request, status
from fastapi.responses import JSONResponse
from huggingface_hub import HfApi, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from pydantic import BaseModel, create_model, model_validator
from autotrain import __version__, logger
from autotrain.app.params import HIDDEN_PARAMS, PARAMS, AppParams
from autotrain.app.utils import token_verification
from autotrain.project import AutoTrainProject
from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.extractive_question_answering.params import ExtractiveQuestionAnsweringParams
from autotrain.trainers.image_classification.params import ImageClassificationParams
from autotrain.trainers.image_regression.params import ImageRegressionParams
from autotrain.trainers.object_detection.params import ObjectDetectionParams
from autotrain.trainers.sent_transformers.params import SentenceTransformersParams
from autotrain.trainers.seq2seq.params import Seq2SeqParams
from autotrain.trainers.tabular.params import TabularParams
from autotrain.trainers.text_classification.params import TextClassificationParams
from autotrain.trainers.text_regression.params import TextRegressionParams
from autotrain.trainers.token_classification.params import TokenClassificationParams
from autotrain.trainers.vlm.params import VLMTrainingParams
FIELDS_TO_EXCLUDE = HIDDEN_PARAMS + ["push_to_hub"]
def create_api_base_model(base_class, class_name):
"""
Creates a new Pydantic model based on a given base class and class name,
excluding specified fields.
Args:
base_class (Type): The base Pydantic model class to extend.
class_name (str): The name of the new model class to create.
Returns:
Type: A new Pydantic model class with the specified modifications.
Notes:
- The function uses type hints from the base class to define the new model's fields.
- Certain fields are excluded from the new model based on the class name.
- The function supports different sets of hidden parameters for different class names.
- The new model's configuration is set to have no protected namespaces.
"""
annotations = get_type_hints(base_class)
if class_name in ("LLMSFTTrainingParamsAPI", "LLMRewardTrainingParamsAPI"):
more_hidden_params = [
"model_ref",
"dpo_beta",
"add_eos_token",
"max_prompt_length",
"max_completion_length",
]
elif class_name == "LLMORPOTrainingParamsAPI":
more_hidden_params = [
"model_ref",
"dpo_beta",
"add_eos_token",
]
elif class_name == "LLMDPOTrainingParamsAPI":
more_hidden_params = [
"add_eos_token",
]
elif class_name == "LLMGenericTrainingParamsAPI":
more_hidden_params = [
"model_ref",
"dpo_beta",
"max_prompt_length",
"max_completion_length",
]
else:
more_hidden_params = []
_excluded = FIELDS_TO_EXCLUDE + more_hidden_params
new_fields: Dict[str, Tuple[Any, Any]] = {}
for name, field in base_class.__fields__.items():
if name not in _excluded:
field_type = annotations[name]
if field.default is not None:
field_default = field.default
elif field.default_factory is not None:
field_default = field.default_factory
else:
field_default = None
new_fields[name] = (field_type, field_default)
return create_model(
class_name,
**{key: (value[0], value[1]) for key, value in new_fields.items()},
__config__=type("Config", (), {"protected_namespaces": ()}),
)
LLMSFTTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMSFTTrainingParamsAPI")
LLMDPOTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMDPOTrainingParamsAPI")
LLMORPOTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMORPOTrainingParamsAPI")
LLMGenericTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMGenericTrainingParamsAPI")
LLMRewardTrainingParamsAPI = create_api_base_model(LLMTrainingParams, "LLMRewardTrainingParamsAPI")
ImageClassificationParamsAPI = create_api_base_model(ImageClassificationParams, "ImageClassificationParamsAPI")
Seq2SeqParamsAPI = create_api_base_model(Seq2SeqParams, "Seq2SeqParamsAPI")
TabularClassificationParamsAPI = create_api_base_model(TabularParams, "TabularClassificationParamsAPI")
TabularRegressionParamsAPI = create_api_base_model(TabularParams, "TabularRegressionParamsAPI")
TextClassificationParamsAPI = create_api_base_model(TextClassificationParams, "TextClassificationParamsAPI")
TextRegressionParamsAPI = create_api_base_model(TextRegressionParams, "TextRegressionParamsAPI")
TokenClassificationParamsAPI = create_api_base_model(TokenClassificationParams, "TokenClassificationParamsAPI")
SentenceTransformersParamsAPI = create_api_base_model(SentenceTransformersParams, "SentenceTransformersParamsAPI")
ImageRegressionParamsAPI = create_api_base_model(ImageRegressionParams, "ImageRegressionParamsAPI")
VLMTrainingParamsAPI = create_api_base_model(VLMTrainingParams, "VLMTrainingParamsAPI")
ExtractiveQuestionAnsweringParamsAPI = create_api_base_model(
ExtractiveQuestionAnsweringParams, "ExtractiveQuestionAnsweringParamsAPI"
)
ObjectDetectionParamsAPI = create_api_base_model(ObjectDetectionParams, "ObjectDetectionParamsAPI")
class LLMSFTColumnMapping(BaseModel):
text_column: str
class LLMDPOColumnMapping(BaseModel):
text_column: str
rejected_text_column: str
prompt_text_column: str
class LLMORPOColumnMapping(BaseModel):
text_column: str
rejected_text_column: str
prompt_text_column: str
class LLMGenericColumnMapping(BaseModel):
text_column: str
class LLMRewardColumnMapping(BaseModel):
text_column: str
rejected_text_column: str
class ImageClassificationColumnMapping(BaseModel):
image_column: str
target_column: str
class ImageRegressionColumnMapping(BaseModel):
image_column: str
target_column: str
class Seq2SeqColumnMapping(BaseModel):
text_column: str
target_column: str
class TabularClassificationColumnMapping(BaseModel):
id_column: str
target_columns: List[str]
class TabularRegressionColumnMapping(BaseModel):
id_column: str
target_columns: List[str]
class TextClassificationColumnMapping(BaseModel):
text_column: str
target_column: str
class TextRegressionColumnMapping(BaseModel):
text_column: str
target_column: str
class TokenClassificationColumnMapping(BaseModel):
tokens_column: str
tags_column: str
class STPairColumnMapping(BaseModel):
sentence1_column: str
sentence2_column: str
class STPairClassColumnMapping(BaseModel):
sentence1_column: str
sentence2_column: str
target_column: str
class STPairScoreColumnMapping(BaseModel):
sentence1_column: str
sentence2_column: str
target_column: str
class STTripletColumnMapping(BaseModel):
sentence1_column: str
sentence2_column: str
sentence3_column: str
class STQAColumnMapping(BaseModel):
sentence1_column: str
sentence2_column: str
class VLMColumnMapping(BaseModel):
image_column: str
text_column: str
prompt_text_column: str
class ExtractiveQuestionAnsweringColumnMapping(BaseModel):
text_column: str
question_column: str
answer_column: str
class ObjectDetectionColumnMapping(BaseModel):
image_column: str
objects_column: str
class APICreateProjectModel(BaseModel):
"""
APICreateProjectModel is a Pydantic model that defines the schema for creating a project.
Attributes:
project_name (str): The name of the project.
task (Literal): The type of task for the project. Supported tasks include various LLM tasks,
image classification, seq2seq, token classification, text classification,
text regression, tabular classification, tabular regression, image regression, VLM tasks,
and extractive question answering.
base_model (str): The base model to be used for the project.
hardware (Literal): The type of hardware to be used for the project. Supported hardware options
include various configurations of spaces and local.
params (Union): The training parameters for the project. The type of parameters depends on the
task selected.
username (str): The username of the person creating the project.
column_mapping (Optional[Union]): The column mapping for the project. The type of column mapping
depends on the task selected.
hub_dataset (str): The dataset to be used for the project.
train_split (str): The training split of the dataset.
valid_split (Optional[str]): The validation split of the dataset.
Methods:
validate_column_mapping(cls, values): Validates the column mapping based on the task selected.
validate_params(cls, values): Validates the training parameters based on the task selected.
"""
project_name: str
task: Literal[
"llm:sft",
"llm:dpo",
"llm:orpo",
"llm:generic",
"llm:reward",
"st:pair",
"st:pair_class",
"st:pair_score",
"st:triplet",
"st:qa",
"image-classification",
"seq2seq",
"token-classification",
"text-classification",
"text-regression",
"tabular-classification",
"tabular-regression",
"image-regression",
"vlm:captioning",
"vlm:vqa",
"extractive-question-answering",
"image-object-detection",
]
base_model: str
hardware: Literal[
"spaces-a10g-large",
"spaces-a10g-small",
"spaces-a100-large",
"spaces-t4-medium",
"spaces-t4-small",
"spaces-cpu-upgrade",
"spaces-cpu-basic",
"spaces-l4x1",
"spaces-l4x4",
"spaces-l40sx1",
"spaces-l40sx4",
"spaces-l40sx8",
"spaces-a10g-largex2",
"spaces-a10g-largex4",
# "local",
]
params: Union[
LLMSFTTrainingParamsAPI,
LLMDPOTrainingParamsAPI,
LLMORPOTrainingParamsAPI,
LLMGenericTrainingParamsAPI,
LLMRewardTrainingParamsAPI,
SentenceTransformersParamsAPI,
ImageClassificationParamsAPI,
Seq2SeqParamsAPI,
TabularClassificationParamsAPI,
TabularRegressionParamsAPI,
TextClassificationParamsAPI,
TextRegressionParamsAPI,
TokenClassificationParamsAPI,
ImageRegressionParamsAPI,
VLMTrainingParamsAPI,
ExtractiveQuestionAnsweringParamsAPI,
ObjectDetectionParamsAPI,
]
username: str
column_mapping: Optional[
Union[
LLMSFTColumnMapping,
LLMDPOColumnMapping,
LLMORPOColumnMapping,
LLMGenericColumnMapping,
LLMRewardColumnMapping,
ImageClassificationColumnMapping,
Seq2SeqColumnMapping,
TabularClassificationColumnMapping,
TabularRegressionColumnMapping,
TextClassificationColumnMapping,
TextRegressionColumnMapping,
TokenClassificationColumnMapping,
STPairColumnMapping,
STPairClassColumnMapping,
STPairScoreColumnMapping,
STTripletColumnMapping,
STQAColumnMapping,
ImageRegressionColumnMapping,
VLMColumnMapping,
ExtractiveQuestionAnsweringColumnMapping,
ObjectDetectionColumnMapping,
]
] = None
hub_dataset: str
train_split: str
valid_split: Optional[str] = None
@model_validator(mode="before")
@classmethod
def validate_column_mapping(cls, values):
if values.get("task") == "llm:sft":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for llm:sft")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for llm:sft")
values["column_mapping"] = LLMSFTColumnMapping(**values["column_mapping"])
elif values.get("task") == "llm:dpo":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for llm:dpo")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for llm:dpo")
if not values.get("column_mapping").get("rejected_text_column"):
raise ValueError("rejected_text_column is required for llm:dpo")
if not values.get("column_mapping").get("prompt_text_column"):
raise ValueError("prompt_text_column is required for llm:dpo")
values["column_mapping"] = LLMDPOColumnMapping(**values["column_mapping"])
elif values.get("task") == "llm:orpo":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for llm:orpo")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for llm:orpo")
if not values.get("column_mapping").get("rejected_text_column"):
raise ValueError("rejected_text_column is required for llm:orpo")
if not values.get("column_mapping").get("prompt_text_column"):
raise ValueError("prompt_text_column is required for llm:orpo")
values["column_mapping"] = LLMORPOColumnMapping(**values["column_mapping"])
elif values.get("task") == "llm:generic":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for llm:generic")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for llm:generic")
values["column_mapping"] = LLMGenericColumnMapping(**values["column_mapping"])
elif values.get("task") == "llm:reward":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for llm:reward")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for llm:reward")
if not values.get("column_mapping").get("rejected_text_column"):
raise ValueError("rejected_text_column is required for llm:reward")
values["column_mapping"] = LLMRewardColumnMapping(**values["column_mapping"])
elif values.get("task") == "seq2seq":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for seq2seq")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for seq2seq")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for seq2seq")
values["column_mapping"] = Seq2SeqColumnMapping(**values["column_mapping"])
elif values.get("task") == "image-classification":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for image-classification")
if not values.get("column_mapping").get("image_column"):
raise ValueError("image_column is required for image-classification")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for image-classification")
values["column_mapping"] = ImageClassificationColumnMapping(**values["column_mapping"])
elif values.get("task") == "tabular-classification":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for tabular-classification")
if not values.get("column_mapping").get("id_column"):
raise ValueError("id_column is required for tabular-classification")
if not values.get("column_mapping").get("target_columns"):
raise ValueError("target_columns is required for tabular-classification")
values["column_mapping"] = TabularClassificationColumnMapping(**values["column_mapping"])
elif values.get("task") == "tabular-regression":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for tabular-regression")
if not values.get("column_mapping").get("id_column"):
raise ValueError("id_column is required for tabular-regression")
if not values.get("column_mapping").get("target_columns"):
raise ValueError("target_columns is required for tabular-regression")
values["column_mapping"] = TabularRegressionColumnMapping(**values["column_mapping"])
elif values.get("task") == "text-classification":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for text-classification")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for text-classification")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for text-classification")
values["column_mapping"] = TextClassificationColumnMapping(**values["column_mapping"])
elif values.get("task") == "text-regression":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for text-regression")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for text-regression")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for text-regression")
values["column_mapping"] = TextRegressionColumnMapping(**values["column_mapping"])
elif values.get("task") == "token-classification":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for token-classification")
if not values.get("column_mapping").get("tokens_column"):
raise ValueError("tokens_column is required for token-classification")
if not values.get("column_mapping").get("tags_column"):
raise ValueError("tags_column is required for token-classification")
values["column_mapping"] = TokenClassificationColumnMapping(**values["column_mapping"])
elif values.get("task") == "st:pair":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for st:pair")
if not values.get("column_mapping").get("sentence1_column"):
raise ValueError("sentence1_column is required for st:pair")
if not values.get("column_mapping").get("sentence2_column"):
raise ValueError("sentence2_column is required for st:pair")
values["column_mapping"] = STPairColumnMapping(**values["column_mapping"])
elif values.get("task") == "st:pair_class":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for st:pair_class")
if not values.get("column_mapping").get("sentence1_column"):
raise ValueError("sentence1_column is required for st:pair_class")
if not values.get("column_mapping").get("sentence2_column"):
raise ValueError("sentence2_column is required for st:pair_class")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for st:pair_class")
values["column_mapping"] = STPairClassColumnMapping(**values["column_mapping"])
elif values.get("task") == "st:pair_score":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for st:pair_score")
if not values.get("column_mapping").get("sentence1_column"):
raise ValueError("sentence1_column is required for st:pair_score")
if not values.get("column_mapping").get("sentence2_column"):
raise ValueError("sentence2_column is required for st:pair_score")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for st:pair_score")
values["column_mapping"] = STPairScoreColumnMapping(**values["column_mapping"])
elif values.get("task") == "st:triplet":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for st:triplet")
if not values.get("column_mapping").get("sentence1_column"):
raise ValueError("sentence1_column is required for st:triplet")
if not values.get("column_mapping").get("sentence2_column"):
raise ValueError("sentence2_column is required for st:triplet")
if not values.get("column_mapping").get("sentence3_column"):
raise ValueError("sentence3_column is required for st:triplet")
values["column_mapping"] = STTripletColumnMapping(**values["column_mapping"])
elif values.get("task") == "st:qa":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for st:qa")
if not values.get("column_mapping").get("sentence1_column"):
raise ValueError("sentence1_column is required for st:qa")
if not values.get("column_mapping").get("sentence2_column"):
raise ValueError("sentence2_column is required for st:qa")
values["column_mapping"] = STQAColumnMapping(**values["column_mapping"])
elif values.get("task") == "image-regression":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for image-regression")
if not values.get("column_mapping").get("image_column"):
raise ValueError("image_column is required for image-regression")
if not values.get("column_mapping").get("target_column"):
raise ValueError("target_column is required for image-regression")
values["column_mapping"] = ImageRegressionColumnMapping(**values["column_mapping"])
elif values.get("task") == "vlm:captioning":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for vlm:captioning")
if not values.get("column_mapping").get("image_column"):
raise ValueError("image_column is required for vlm:captioning")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for vlm:captioning")
if not values.get("column_mapping").get("prompt_text_column"):
raise ValueError("prompt_text_column is required for vlm:captioning")
values["column_mapping"] = VLMColumnMapping(**values["column_mapping"])
elif values.get("task") == "vlm:vqa":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for vlm:vqa")
if not values.get("column_mapping").get("image_column"):
raise ValueError("image_column is required for vlm:vqa")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for vlm:vqa")
if not values.get("column_mapping").get("prompt_text_column"):
raise ValueError("prompt_text_column is required for vlm:vqa")
values["column_mapping"] = VLMColumnMapping(**values["column_mapping"])
elif values.get("task") == "extractive-question-answering":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for extractive-question-answering")
if not values.get("column_mapping").get("text_column"):
raise ValueError("text_column is required for extractive-question-answering")
if not values.get("column_mapping").get("question_column"):
raise ValueError("question_column is required for extractive-question-answering")
if not values.get("column_mapping").get("answer_column"):
raise ValueError("answer_column is required for extractive-question-answering")
values["column_mapping"] = ExtractiveQuestionAnsweringColumnMapping(**values["column_mapping"])
elif values.get("task") == "image-object-detection":
if not values.get("column_mapping"):
raise ValueError("column_mapping is required for image-object-detection")
if not values.get("column_mapping").get("image_column"):
raise ValueError("image_column is required for image-object-detection")
if not values.get("column_mapping").get("objects_column"):
raise ValueError("objects_column is required for image-object-detection")
values["column_mapping"] = ObjectDetectionColumnMapping(**values["column_mapping"])
return values
@model_validator(mode="before")
@classmethod
def validate_params(cls, values):
if values.get("task") == "llm:sft":
values["params"] = LLMSFTTrainingParamsAPI(**values["params"])
elif values.get("task") == "llm:dpo":
values["params"] = LLMDPOTrainingParamsAPI(**values["params"])
elif values.get("task") == "llm:orpo":
values["params"] = LLMORPOTrainingParamsAPI(**values["params"])
elif values.get("task") == "llm:generic":
values["params"] = LLMGenericTrainingParamsAPI(**values["params"])
elif values.get("task") == "llm:reward":
values["params"] = LLMRewardTrainingParamsAPI(**values["params"])
elif values.get("task") == "seq2seq":
values["params"] = Seq2SeqParamsAPI(**values["params"])
elif values.get("task") == "image-classification":
values["params"] = ImageClassificationParamsAPI(**values["params"])
elif values.get("task") == "tabular-classification":
values["params"] = TabularClassificationParamsAPI(**values["params"])
elif values.get("task") == "tabular-regression":
values["params"] = TabularRegressionParamsAPI(**values["params"])
elif values.get("task") == "text-classification":
values["params"] = TextClassificationParamsAPI(**values["params"])
elif values.get("task") == "text-regression":
values["params"] = TextRegressionParamsAPI(**values["params"])
elif values.get("task") == "token-classification":
values["params"] = TokenClassificationParamsAPI(**values["params"])
elif values.get("task").startswith("st:"):
values["params"] = SentenceTransformersParamsAPI(**values["params"])
elif values.get("task") == "image-regression":
values["params"] = ImageRegressionParamsAPI(**values["params"])
elif values.get("task").startswith("vlm:"):
values["params"] = VLMTrainingParamsAPI(**values["params"])
elif values.get("task") == "extractive-question-answering":
values["params"] = ExtractiveQuestionAnsweringParamsAPI(**values["params"])
elif values.get("task") == "image-object-detection":
values["params"] = ObjectDetectionParamsAPI(**values["params"])
return values
class JobIDModel(BaseModel):
jid: str
api_router = APIRouter()
def api_auth(request: Request):
"""
Authenticates the API request using a Bearer token.
Args:
request (Request): The incoming HTTP request object.
Returns:
str: The verified Bearer token if authentication is successful.
Raises:
HTTPException: If the token is invalid, expired, or missing.
"""
authorization = request.headers.get("Authorization")
if authorization:
schema, _, token = authorization.partition(" ")
if schema.lower() == "bearer":
token = token.strip()
try:
_ = token_verification(token=token)
return token
except Exception as e:
logger.error(f"Failed to verify token: {e}")
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid or expired token: Bearer",
)
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid or expired token",
)
@api_router.post("/create_project", response_class=JSONResponse)
async def api_create_project(project: APICreateProjectModel, token: bool = Depends(api_auth)):
"""
Asynchronously creates a new project based on the provided parameters.
Args:
project (APICreateProjectModel): The model containing the project details and parameters.
token (bool, optional): The authentication token. Defaults to Depends(api_auth).
Returns:
dict: A dictionary containing a success message, the job ID of the created project, and a success status.
Raises:
HTTPException: If there is an error during project creation.
Notes:
- The function determines the hardware type based on the project hardware attribute.
- It logs the provided parameters and column mapping.
- It sets the appropriate parameters based on the task type.
- It updates the parameters with the provided ones and creates an AppParams instance.
- The function then creates an AutoTrainProject instance and initiates the project creation process.
"""
provided_params = project.params.model_dump()
if project.hardware == "local":
hardware = "local-ui" # local-ui has wait=False
else:
hardware = project.hardware
logger.info(provided_params)
logger.info(project.column_mapping)
task = project.task
if task.startswith("llm"):
params = PARAMS["llm"]
trainer = task.split(":")[1]
params.update({"trainer": trainer})
elif task.startswith("st:"):
params = PARAMS["st"]
trainer = task.split(":")[1]
params.update({"trainer": trainer})
elif task.startswith("vlm:"):
params = PARAMS["vlm"]
trainer = task.split(":")[1]
params.update({"trainer": trainer})
elif task.startswith("tabular"):
params = PARAMS["tabular"]
else:
params = PARAMS[task]
params.update(provided_params)
app_params = AppParams(
job_params_json=json.dumps(params),
token=token,
project_name=project.project_name,
username=project.username,
task=task,
data_path=project.hub_dataset,
base_model=project.base_model,
column_mapping=project.column_mapping.model_dump() if project.column_mapping else None,
using_hub_dataset=True,
train_split=project.train_split,
valid_split=project.valid_split,
api=True,
)
params = app_params.munge()
project = AutoTrainProject(params=params, backend=hardware)
job_id = project.create()
return {"message": "Project created", "job_id": job_id, "success": True}
@api_router.get("/version", response_class=JSONResponse)
async def api_version():
"""
Returns the current version of the API.
This asynchronous function retrieves the version of the API from the
__version__ variable and returns it in a dictionary.
Returns:
dict: A dictionary containing the API version.
"""
return {"version": __version__}
@api_router.post("/stop_training", response_class=JSONResponse)
async def api_stop_training(job: JobIDModel, token: bool = Depends(api_auth)):
"""
Stops the training job with the given job ID.
This asynchronous function pauses the training job identified by the provided job ID.
It uses the Hugging Face API to pause the space associated with the job.
Args:
job (JobIDModel): The job model containing the job ID.
token (bool, optional): The authentication token, provided by dependency injection.
Returns:
dict: A dictionary containing a message and a success flag. If the training job
was successfully stopped, the message indicates success and the success flag is True.
If there was an error, the message contains the error details and the success flag is False.
Raises:
Exception: If there is an error while attempting to stop the training job.
"""
hf_api = HfApi(token=token)
job_id = job.jid
try:
hf_api.pause_space(repo_id=job_id)
except Exception as e:
logger.error(f"Failed to stop training: {e}")
return {"message": f"Failed to stop training for {job_id}: {e}", "success": False}
return {"message": f"Training stopped for {job_id}", "success": True}
@api_router.post("/logs", response_class=JSONResponse)
async def api_logs(job: JobIDModel, token: bool = Depends(api_auth)):
"""
Fetch logs for a given job.
This endpoint retrieves logs for a specified job by its job ID. It first obtains a JWT token
to authenticate the request and then fetches the logs from the Hugging Face API.
Args:
job (JobIDModel): The job model containing the job ID.
token (bool, optional): Dependency injection for API authentication. Defaults to Depends(api_auth).
Returns:
JSONResponse: A JSON response containing the logs, success status, and a message.
Raises:
Exception: If there is an error fetching the logs, the exception message is returned in the response.
"""
job_id = job.jid
jwt_url = f"{constants.ENDPOINT}/api/spaces/{job_id}/jwt"
response = get_session().get(jwt_url, headers=build_hf_headers(token=token))
hf_raise_for_status(response)
jwt_token = response.json()["token"] # works for 24h (see "exp" field)
# fetch the logs
logs_url = f"https://api.hf.space/v1/{job_id}/logs/run"
_logs = []
try:
with get_session().get(
logs_url, headers=build_hf_headers(token=jwt_token), stream=True, timeout=3
) as response:
hf_raise_for_status(response)
for line in response.iter_lines():
if not line.startswith(b"data: "):
continue
line_data = line[len(b"data: ") :]
try:
event = json.loads(line_data.decode())
except json.JSONDecodeError:
continue # ignore (for example, empty lines or `b': keep-alive'`)
_logs.append((event["timestamp"], event["data"]))
_logs = "\n".join([f"{timestamp}: {data}" for timestamp, data in _logs])
return {"logs": _logs, "success": True, "message": "Logs fetched successfully"}
except Exception as e:
if "Read timed out" in str(e):
_logs = "\n".join([f"{timestamp}: {data}" for timestamp, data in _logs])
return {"logs": _logs, "success": True, "message": "Logs fetched successfully"}
return {"logs": str(e), "success": False, "message": "Failed to fetch logs"}
|