File size: 6,587 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import json
from dataclasses import dataclass
from typing import Union

from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.extractive_question_answering.params import ExtractiveQuestionAnsweringParams
from autotrain.trainers.generic.params import GenericParams
from autotrain.trainers.image_classification.params import ImageClassificationParams
from autotrain.trainers.image_regression.params import ImageRegressionParams
from autotrain.trainers.object_detection.params import ObjectDetectionParams
from autotrain.trainers.sent_transformers.params import SentenceTransformersParams
from autotrain.trainers.seq2seq.params import Seq2SeqParams
from autotrain.trainers.tabular.params import TabularParams
from autotrain.trainers.text_classification.params import TextClassificationParams
from autotrain.trainers.text_regression.params import TextRegressionParams
from autotrain.trainers.token_classification.params import TokenClassificationParams
from autotrain.trainers.vlm.params import VLMTrainingParams


AVAILABLE_HARDWARE = {
    # hugging face spaces
    "spaces-a10g-large": "a10g-large",
    "spaces-a10g-small": "a10g-small",
    "spaces-a100-large": "a100-large",
    "spaces-t4-medium": "t4-medium",
    "spaces-t4-small": "t4-small",
    "spaces-cpu-upgrade": "cpu-upgrade",
    "spaces-cpu-basic": "cpu-basic",
    "spaces-l4x1": "l4x1",
    "spaces-l4x4": "l4x4",
    "spaces-l40sx1": "l40sx1",
    "spaces-l40sx4": "l40sx4",
    "spaces-l40sx8": "l40sx8",
    "spaces-a10g-largex2": "a10g-largex2",
    "spaces-a10g-largex4": "a10g-largex4",
    # ngc
    "dgx-a100": "dgxa100.80g.1.norm",
    "dgx-2a100": "dgxa100.80g.2.norm",
    "dgx-4a100": "dgxa100.80g.4.norm",
    "dgx-8a100": "dgxa100.80g.8.norm",
    # hugging face endpoints
    "ep-aws-useast1-s": "aws_us-east-1_gpu_small_g4dn.xlarge",
    "ep-aws-useast1-m": "aws_us-east-1_gpu_medium_g5.2xlarge",
    "ep-aws-useast1-l": "aws_us-east-1_gpu_large_g4dn.12xlarge",
    "ep-aws-useast1-xl": "aws_us-east-1_gpu_xlarge_p4de",
    "ep-aws-useast1-2xl": "aws_us-east-1_gpu_2xlarge_p4de",
    "ep-aws-useast1-4xl": "aws_us-east-1_gpu_4xlarge_p4de",
    "ep-aws-useast1-8xl": "aws_us-east-1_gpu_8xlarge_p4de",
    # nvcf
    "nvcf-l40sx1": {"id": "67bb8939-c932-429a-a446-8ae898311856"},
    "nvcf-h100x1": {"id": "848348f8-a4e2-4242-bce9-6baa1bd70a66"},
    "nvcf-h100x2": {"id": "fb006a89-451e-4d9c-82b5-33eff257e0bf"},
    "nvcf-h100x4": {"id": "21bae5af-87e5-4132-8fc0-bf3084e59a57"},
    "nvcf-h100x8": {"id": "6e0c2af6-5368-47e0-b15e-c070c2c92018"},
    # local
    "local-ui": "local",
    "local": "local",
    "local-cli": "local",
}


@dataclass
class BaseBackend:
    """
    BaseBackend class is responsible for initializing and validating backend configurations
    for various training parameters. It supports multiple types of training parameters
    including text classification, image classification, LLM training, and more.

    Attributes:
        params (Union[TextClassificationParams, ImageClassificationParams, LLMTrainingParams,
                      GenericParams, TabularParams, Seq2SeqParams,
                      TokenClassificationParams, TextRegressionParams, ObjectDetectionParams,
                      SentenceTransformersParams, ImageRegressionParams, VLMTrainingParams,
                      ExtractiveQuestionAnsweringParams]): Training parameters.
        backend (str): Backend type.

    Methods:
        __post_init__(): Initializes the backend configuration, validates parameters,
                         sets task IDs, and prepares environment variables.
    """

    params: Union[
        TextClassificationParams,
        ImageClassificationParams,
        LLMTrainingParams,
        GenericParams,
        TabularParams,
        Seq2SeqParams,
        TokenClassificationParams,
        TextRegressionParams,
        ObjectDetectionParams,
        SentenceTransformersParams,
        ImageRegressionParams,
        VLMTrainingParams,
        ExtractiveQuestionAnsweringParams,
    ]
    backend: str

    def __post_init__(self):
        self.username = None

        if isinstance(self.params, GenericParams) and self.backend.startswith("local"):
            raise ValueError("Local backend is not supported for GenericParams")

        if (
            self.backend.startswith("spaces-")
            or self.backend.startswith("ep-")
            or self.backend.startswith("ngc-")
            or self.backend.startswith("nvcf-")
        ):
            if self.params.username is not None:
                self.username = self.params.username
            else:
                raise ValueError("Must provide username")

        if isinstance(self.params, LLMTrainingParams):
            self.task_id = 9
        elif isinstance(self.params, TextClassificationParams):
            self.task_id = 2
        elif isinstance(self.params, TabularParams):
            self.task_id = 26
        elif isinstance(self.params, GenericParams):
            self.task_id = 27
        elif isinstance(self.params, Seq2SeqParams):
            self.task_id = 28
        elif isinstance(self.params, ImageClassificationParams):
            self.task_id = 18
        elif isinstance(self.params, TokenClassificationParams):
            self.task_id = 4
        elif isinstance(self.params, TextRegressionParams):
            self.task_id = 10
        elif isinstance(self.params, ObjectDetectionParams):
            self.task_id = 29
        elif isinstance(self.params, SentenceTransformersParams):
            self.task_id = 30
        elif isinstance(self.params, ImageRegressionParams):
            self.task_id = 24
        elif isinstance(self.params, VLMTrainingParams):
            self.task_id = 31
        elif isinstance(self.params, ExtractiveQuestionAnsweringParams):
            self.task_id = 5
        else:
            raise NotImplementedError

        self.available_hardware = AVAILABLE_HARDWARE

        self.wait = False
        if self.backend == "local-ui":
            self.wait = False
        if self.backend in ("local", "local-cli"):
            self.wait = True

        self.env_vars = {
            "HF_TOKEN": self.params.token,
            "AUTOTRAIN_USERNAME": self.username,
            "PROJECT_NAME": self.params.project_name,
            "TASK_ID": str(self.task_id),
            "PARAMS": json.dumps(self.params.model_dump_json()),
        }
        self.env_vars["DATA_PATH"] = self.params.data_path

        if not isinstance(self.params, GenericParams):
            self.env_vars["MODEL"] = self.params.model