File size: 9,538 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
from dataclasses import dataclass
from typing import Optional

import requests

from autotrain import logger


AUTOTRAIN_API = os.environ.get("AUTOTRAIN_API", "https://autotrain-projects-autotrain-advanced.hf.space/")

BACKENDS = {
    "spaces-a10g-large": "a10g-large",
    "spaces-a10g-small": "a10g-small",
    "spaces-a100-large": "a100-large",
    "spaces-t4-medium": "t4-medium",
    "spaces-t4-small": "t4-small",
    "spaces-cpu-upgrade": "cpu-upgrade",
    "spaces-cpu-basic": "cpu-basic",
    "spaces-l4x1": "l4x1",
    "spaces-l4x4": "l4x4",
    "spaces-l40sx1": "l40sx1",
    "spaces-l40sx4": "l40sx4",
    "spaces-l40sx8": "l40sx8",
    "spaces-a10g-largex2": "a10g-largex2",
    "spaces-a10g-largex4": "a10g-largex4",
}


PARAMS = {}
PARAMS["llm"] = {
    "target_modules": "all-linear",
    "log": "tensorboard",
    "mixed_precision": "fp16",
    "quantization": "int4",
    "peft": True,
    "block_size": 1024,
    "epochs": 3,
    "padding": "right",
    "chat_template": "none",
    "max_completion_length": 128,
    "distributed_backend": "ddp",
    "scheduler": "linear",
    "merge_adapter": True,
}

PARAMS["text-classification"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["st"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["image-classification"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["image-object-detection"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["seq2seq"] = {
    "mixed_precision": "fp16",
    "target_modules": "all-linear",
    "log": "tensorboard",
}

PARAMS["tabular"] = {
    "categorical_imputer": "most_frequent",
    "numerical_imputer": "median",
    "numeric_scaler": "robust",
}

PARAMS["token-classification"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["text-regression"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["image-regression"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
}

PARAMS["vlm"] = {
    "mixed_precision": "fp16",
    "target_modules": "all-linear",
    "log": "tensorboard",
    "quantization": "int4",
    "peft": True,
    "epochs": 3,
}

PARAMS["extractive-qa"] = {
    "mixed_precision": "fp16",
    "log": "tensorboard",
    "max_seq_length": 512,
    "max_doc_stride": 128,
}

DEFAULT_COLUMN_MAPPING = {}
DEFAULT_COLUMN_MAPPING["llm:sft"] = {"text_column": "text"}
DEFAULT_COLUMN_MAPPING["llm:generic"] = {"text_column": "text"}
DEFAULT_COLUMN_MAPPING["llm:default"] = {"text_column": "text"}
DEFAULT_COLUMN_MAPPING["llm:dpo"] = {
    "prompt_column": "prompt",
    "text_column": "chosen",
    "rejected_text_column": "rejected",
}
DEFAULT_COLUMN_MAPPING["llm:orpo"] = {
    "prompt_column": "prompt",
    "text_column": "chosen",
    "rejected_text_column": "rejected",
}
DEFAULT_COLUMN_MAPPING["llm:reward"] = {"text_column": "chosen", "rejected_text_column": "rejected"}
DEFAULT_COLUMN_MAPPING["vlm:captioning"] = {"image_column": "image", "text_column": "caption"}
DEFAULT_COLUMN_MAPPING["vlm:vqa"] = {
    "image_column": "image",
    "prompt_text_column": "question",
    "text_column": "answer",
}
DEFAULT_COLUMN_MAPPING["st:pair"] = {"sentence1": "anchor", "sentence2": "positive"}
DEFAULT_COLUMN_MAPPING["st:pair_class"] = {
    "sentence1_column": "premise",
    "sentence2_column": "hypothesis",
    "target_column": "label",
}
DEFAULT_COLUMN_MAPPING["st:pair_score"] = {
    "sentence1_column": "sentence1",
    "sentence2_column": "sentence2",
    "target_column": "score",
}
DEFAULT_COLUMN_MAPPING["st:triplet"] = {
    "sentence1_column": "anchor",
    "sentence2_column": "positive",
    "sentence3_column": "negative",
}
DEFAULT_COLUMN_MAPPING["st:qa"] = {"sentence1_column": "query", "sentence2_column": "answer"}
DEFAULT_COLUMN_MAPPING["text-classification"] = {"text_column": "text", "target_column": "target"}
DEFAULT_COLUMN_MAPPING["seq2seq"] = {"text_column": "text", "target_column": "target"}
DEFAULT_COLUMN_MAPPING["text-regression"] = {"text_column": "text", "target_column": "target"}
DEFAULT_COLUMN_MAPPING["token-classification"] = {"text_column": "tokens", "target_column": "tags"}
DEFAULT_COLUMN_MAPPING["image-classification"] = {"image_column": "image", "target_column": "label"}
DEFAULT_COLUMN_MAPPING["image-regression"] = {"image_column": "image", "target_column": "target"}
DEFAULT_COLUMN_MAPPING["image-object-detection"] = {"image_column": "image", "objects_column": "objects"}
DEFAULT_COLUMN_MAPPING["tabular:classification"] = {"id_column": "id", "target__columns": ["target"]}
DEFAULT_COLUMN_MAPPING["tabular:regression"] = {"id_column": "id", "target_columns": ["target"]}
DEFAULT_COLUMN_MAPPING["extractive-qa"] = {
    "text_column": "context",
    "question_column": "question",
    "answer_column": "answers",
}

VALID_TASKS = [k for k in DEFAULT_COLUMN_MAPPING.keys()]


@dataclass
class Client:
    """
    A client to interact with the AutoTrain API.
    Attributes:
        host (Optional[str]): The host URL for the AutoTrain API.
        token (Optional[str]): The authentication token for the API.
        username (Optional[str]): The username for the API.
    Methods:
        __post_init__():
            Initializes the client with default values if not provided and sets up headers.
        __str__():
            Returns a string representation of the client with masked token.
        __repr__():
            Returns a string representation of the client with masked token.
        create(project_name: str, task: str, base_model: str, hardware: str, dataset: str, train_split: str, column_mapping: Optional[dict] = None, params: Optional[dict] = None, valid_split: Optional[str] = None):
            Creates a new project on the AutoTrain platform.
        get_logs(job_id: str):
            Retrieves logs for a given job ID.
        stop_training(job_id: str):
            Stops the training for a given job ID.
    """

    host: Optional[str] = None
    token: Optional[str] = None
    username: Optional[str] = None

    def __post_init__(self):
        if self.host is None:
            self.host = AUTOTRAIN_API

        if self.token is None:
            self.token = os.environ.get("HF_TOKEN")

        if self.username is None:
            self.username = os.environ.get("HF_USERNAME")

        if self.token is None or self.username is None:
            raise ValueError("Please provide a valid username and token")

        self.headers = {"Authorization": f"Bearer {self.token}", "Content-Type": "application/json"}

    def __str__(self):
        return f"Client(host={self.host}, token=****, username={self.username})"

    def __repr__(self):
        return self.__str__()

    def create(
        self,
        project_name: str,
        task: str,
        base_model: str,
        backend: str,
        dataset: str,
        train_split: str,
        column_mapping: Optional[dict] = None,
        params: Optional[dict] = None,
        valid_split: Optional[str] = None,
    ):

        if task not in VALID_TASKS:
            raise ValueError(f"Invalid task. Valid tasks are: {VALID_TASKS}")

        if backend not in BACKENDS:
            raise ValueError(f"Invalid backend. Valid backends are: {list(BACKENDS.keys())}")

        url = f"{self.host}/api/create_project"

        if task == "llm:defaut":
            task = "llm:generic"

        if params is None:
            params = {}

        if task.startswith("llm"):
            params = {k: v for k, v in PARAMS["llm"].items() if k not in params}
        elif task.startswith("st"):
            params = {k: v for k, v in PARAMS["st"].items() if k not in params}
        else:
            params = {k: v for k, v in PARAMS[task].items() if k not in params}

        if column_mapping is None:
            column_mapping = DEFAULT_COLUMN_MAPPING[task]

        # check if column_mapping is valid for the task
        default_col_map = DEFAULT_COLUMN_MAPPING[task]
        missing_cols = []
        for k, _ in default_col_map.items():
            if k not in column_mapping.keys():
                missing_cols.append(k)

        if missing_cols:
            raise ValueError(f"Missing columns in column_mapping: {missing_cols}")

        data = {
            "project_name": project_name,
            "task": task,
            "base_model": base_model,
            "hardware": backend,
            "params": params,
            "username": self.username,
            "column_mapping": column_mapping,
            "hub_dataset": dataset,
            "train_split": train_split,
            "valid_split": valid_split,
        }
        response = requests.post(url, headers=self.headers, json=data)
        if response.status_code == 200:
            resp = response.json()
            logger.info(
                f"Project created successfully. Job ID: {resp['job_id']}. View logs at: https://hf.co/spaces/{resp['job_id']}"
            )
            return resp
        else:
            logger.error(f"Error creating project: {response.json()}")
            return response.json()

    def get_logs(self, job_id: str):
        url = f"{self.host}/api/logs"
        data = {"jid": job_id}
        response = requests.post(url, headers=self.headers, json=data)
        return response.json()

    def stop_training(self, job_id: str):
        url = f"{self.host}/api/stop_training/{job_id}"
        data = {"jid": job_id}
        response = requests.post(url, headers=self.headers, json=data)
        return response.json()