File size: 16,561 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import os
import shlex

import torch

from autotrain import logger
from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.extractive_question_answering.params import ExtractiveQuestionAnsweringParams
from autotrain.trainers.generic.params import GenericParams
from autotrain.trainers.image_classification.params import ImageClassificationParams
from autotrain.trainers.image_regression.params import ImageRegressionParams
from autotrain.trainers.object_detection.params import ObjectDetectionParams
from autotrain.trainers.sent_transformers.params import SentenceTransformersParams
from autotrain.trainers.seq2seq.params import Seq2SeqParams
from autotrain.trainers.tabular.params import TabularParams
from autotrain.trainers.text_classification.params import TextClassificationParams
from autotrain.trainers.text_regression.params import TextRegressionParams
from autotrain.trainers.token_classification.params import TokenClassificationParams
from autotrain.trainers.vlm.params import VLMTrainingParams


CPU_COMMAND = [
    "accelerate",
    "launch",
    "--cpu",
]

SINGLE_GPU_COMMAND = [
    "accelerate",
    "launch",
    "--num_machines",
    "1",
    "--num_processes",
    "1",
]


def get_accelerate_command(num_gpus, gradient_accumulation_steps=1, distributed_backend=None):
    """
    Generates the appropriate command to launch a training job using the `accelerate` library based on the number of GPUs
    and the specified distributed backend.

    Args:
        num_gpus (int): The number of GPUs available for training. If 0, training will be forced on CPU.
        gradient_accumulation_steps (int, optional): The number of gradient accumulation steps. Defaults to 1.
        distributed_backend (str, optional): The distributed backend to use. Can be "ddp" (Distributed Data Parallel),
                                             "deepspeed", or None. Defaults to None.

    Returns:
        list or str: The command to be executed as a list of strings. If no GPU is found, returns a CPU command string.
                     If a single GPU is found, returns a single GPU command string. Otherwise, returns a list of
                     command arguments for multi-GPU or DeepSpeed training.

    Raises:
        ValueError: If an unsupported distributed backend is specified.
    """
    if num_gpus == 0:
        logger.warning("No GPU found. Forcing training on CPU. This will be super slow!")
        return CPU_COMMAND

    if num_gpus == 1:
        return SINGLE_GPU_COMMAND

    if distributed_backend in ("ddp", None):
        return [
            "accelerate",
            "launch",
            "--multi_gpu",
            "--num_machines",
            "1",
            "--num_processes",
            str(num_gpus),
        ]
    elif distributed_backend == "deepspeed":
        return [
            "accelerate",
            "launch",
            "--use_deepspeed",
            "--zero_stage",
            "3",
            "--offload_optimizer_device",
            "none",
            "--offload_param_device",
            "none",
            "--zero3_save_16bit_model",
            "true",
            "--zero3_init_flag",
            "true",
            "--deepspeed_multinode_launcher",
            "standard",
            "--gradient_accumulation_steps",
            str(gradient_accumulation_steps),
        ]
    else:
        raise ValueError("Unsupported distributed backend")


def launch_command(params):
    """
    Launches the appropriate training command based on the type of training parameters provided.

    Args:
        params (object): An instance of one of the training parameter classes. This can be one of the following:
            - LLMTrainingParams
            - GenericParams
            - TabularParams
            - TextClassificationParams
            - TextRegressionParams
            - SentenceTransformersParams
            - ExtractiveQuestionAnsweringParams
            - TokenClassificationParams
            - ImageClassificationParams
            - ObjectDetectionParams
            - ImageRegressionParams
            - Seq2SeqParams
            - VLMTrainingParams

    Returns:
        list: A list of command line arguments to be executed for training.

    Raises:
        ValueError: If the provided params type is unsupported.
    """

    params.project_name = shlex.split(params.project_name)[0]
    cuda_available = torch.cuda.is_available()
    mps_available = torch.backends.mps.is_available()
    if cuda_available:
        num_gpus = torch.cuda.device_count()
    elif mps_available:
        num_gpus = 1
    else:
        num_gpus = 0
    if isinstance(params, LLMTrainingParams):
        cmd = get_accelerate_command(num_gpus, params.gradient_accumulation, params.distributed_backend)
        if num_gpus > 0:
            cmd.append("--mixed_precision")
            if params.mixed_precision == "fp16":
                cmd.append("fp16")
            elif params.mixed_precision == "bf16":
                cmd.append("bf16")
            else:
                cmd.append("no")

        cmd.extend(
            [
                "-m",
                "autotrain.trainers.clm",
                "--training_config",
                os.path.join(params.project_name, "training_params.json"),
            ]
        )

    elif isinstance(params, GenericParams):
        cmd = [
            "python",
            "-m",
            "autotrain.trainers.generic",
            "--config",
            os.path.join(params.project_name, "training_params.json"),
        ]
    elif isinstance(params, TabularParams):
        cmd = [
            "python",
            "-m",
            "autotrain.trainers.tabular",
            "--training_config",
            os.path.join(params.project_name, "training_params.json"),
        ]
    elif (
        isinstance(params, TextClassificationParams)
        or isinstance(params, TextRegressionParams)
        or isinstance(params, SentenceTransformersParams)
        or isinstance(params, ExtractiveQuestionAnsweringParams)
    ):
        if num_gpus == 0:
            cmd = [
                "accelerate",
                "launch",
                "--cpu",
            ]
        elif num_gpus == 1:
            cmd = [
                "accelerate",
                "launch",
                "--num_machines",
                "1",
                "--num_processes",
                "1",
            ]
        else:
            cmd = [
                "accelerate",
                "launch",
                "--multi_gpu",
                "--num_machines",
                "1",
                "--num_processes",
                str(num_gpus),
            ]

        if num_gpus > 0:
            cmd.append("--mixed_precision")
            if params.mixed_precision == "fp16":
                cmd.append("fp16")
            elif params.mixed_precision == "bf16":
                cmd.append("bf16")
            else:
                cmd.append("no")

        if isinstance(params, TextRegressionParams):
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.text_regression",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
        elif isinstance(params, SentenceTransformersParams):
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.sent_transformers",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
        elif isinstance(params, ExtractiveQuestionAnsweringParams):
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.extractive_question_answering",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
        else:
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.text_classification",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
    elif isinstance(params, TokenClassificationParams):
        if num_gpus == 0:
            cmd = [
                "accelerate",
                "launch",
                "--cpu",
            ]
        elif num_gpus == 1:
            cmd = [
                "accelerate",
                "launch",
                "--num_machines",
                "1",
                "--num_processes",
                "1",
            ]
        else:
            cmd = [
                "accelerate",
                "launch",
                "--multi_gpu",
                "--num_machines",
                "1",
                "--num_processes",
                str(num_gpus),
            ]

        if num_gpus > 0:
            cmd.append("--mixed_precision")
            if params.mixed_precision == "fp16":
                cmd.append("fp16")
            elif params.mixed_precision == "bf16":
                cmd.append("bf16")
            else:
                cmd.append("no")

        cmd.extend(
            [
                "-m",
                "autotrain.trainers.token_classification",
                "--training_config",
                os.path.join(params.project_name, "training_params.json"),
            ]
        )
    elif (
        isinstance(params, ImageClassificationParams)
        or isinstance(params, ObjectDetectionParams)
        or isinstance(params, ImageRegressionParams)
    ):
        if num_gpus == 0:
            cmd = [
                "accelerate",
                "launch",
                "--cpu",
            ]
        elif num_gpus == 1:
            cmd = [
                "accelerate",
                "launch",
                "--num_machines",
                "1",
                "--num_processes",
                "1",
            ]
        else:
            cmd = [
                "accelerate",
                "launch",
                "--multi_gpu",
                "--num_machines",
                "1",
                "--num_processes",
                str(num_gpus),
            ]

        if num_gpus > 0:
            cmd.append("--mixed_precision")
            if params.mixed_precision == "fp16":
                cmd.append("fp16")
            elif params.mixed_precision == "bf16":
                cmd.append("bf16")
            else:
                cmd.append("no")

        if isinstance(params, ObjectDetectionParams):
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.object_detection",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
        elif isinstance(params, ImageRegressionParams):
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.image_regression",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
        else:
            cmd.extend(
                [
                    "-m",
                    "autotrain.trainers.image_classification",
                    "--training_config",
                    os.path.join(params.project_name, "training_params.json"),
                ]
            )
    elif isinstance(params, Seq2SeqParams):
        if num_gpus == 0:
            logger.warning("No GPU found. Forcing training on CPU. This will be super slow!")
            cmd = [
                "accelerate",
                "launch",
                "--cpu",
            ]
        elif num_gpus == 1:
            cmd = [
                "accelerate",
                "launch",
                "--num_machines",
                "1",
                "--num_processes",
                "1",
            ]
        elif num_gpus == 2:
            cmd = [
                "accelerate",
                "launch",
                "--multi_gpu",
                "--num_machines",
                "1",
                "--num_processes",
                "2",
            ]
        else:
            if params.quantization in ("int8", "int4") and params.peft and params.mixed_precision == "bf16":
                cmd = [
                    "accelerate",
                    "launch",
                    "--multi_gpu",
                    "--num_machines",
                    "1",
                    "--num_processes",
                    str(num_gpus),
                ]
            else:
                cmd = [
                    "accelerate",
                    "launch",
                    "--use_deepspeed",
                    "--zero_stage",
                    "3",
                    "--offload_optimizer_device",
                    "none",
                    "--offload_param_device",
                    "none",
                    "--zero3_save_16bit_model",
                    "true",
                    "--zero3_init_flag",
                    "true",
                    "--deepspeed_multinode_launcher",
                    "standard",
                    "--gradient_accumulation_steps",
                    str(params.gradient_accumulation),
                ]
        if num_gpus > 0:
            cmd.append("--mixed_precision")
            if params.mixed_precision == "fp16":
                cmd.append("fp16")
            elif params.mixed_precision == "bf16":
                cmd.append("bf16")
            else:
                cmd.append("no")

        cmd.extend(
            [
                "-m",
                "autotrain.trainers.seq2seq",
                "--training_config",
                os.path.join(params.project_name, "training_params.json"),
            ]
        )

    elif isinstance(params, VLMTrainingParams):
        if num_gpus == 0:
            logger.warning("No GPU found. Forcing training on CPU. This will be super slow!")
            cmd = [
                "accelerate",
                "launch",
                "--cpu",
            ]
        elif num_gpus == 1:
            cmd = [
                "accelerate",
                "launch",
                "--num_machines",
                "1",
                "--num_processes",
                "1",
            ]
        elif num_gpus == 2:
            cmd = [
                "accelerate",
                "launch",
                "--multi_gpu",
                "--num_machines",
                "1",
                "--num_processes",
                "2",
            ]
        else:
            if params.quantization in ("int8", "int4") and params.peft and params.mixed_precision == "bf16":
                cmd = [
                    "accelerate",
                    "launch",
                    "--multi_gpu",
                    "--num_machines",
                    "1",
                    "--num_processes",
                    str(num_gpus),
                ]
            else:
                cmd = [
                    "accelerate",
                    "launch",
                    "--use_deepspeed",
                    "--zero_stage",
                    "3",
                    "--offload_optimizer_device",
                    "none",
                    "--offload_param_device",
                    "none",
                    "--zero3_save_16bit_model",
                    "true",
                    "--zero3_init_flag",
                    "true",
                    "--deepspeed_multinode_launcher",
                    "standard",
                    "--gradient_accumulation_steps",
                    str(params.gradient_accumulation),
                ]

        if num_gpus > 0:
            cmd.append("--mixed_precision")
            if params.mixed_precision == "fp16":
                cmd.append("fp16")
            elif params.mixed_precision == "bf16":
                cmd.append("bf16")
            else:
                cmd.append("no")

        cmd.extend(
            [
                "-m",
                "autotrain.trainers.vlm",
                "--training_config",
                os.path.join(params.project_name, "training_params.json"),
            ]
        )

    else:
        raise ValueError("Unsupported params type")

    logger.info(cmd)
    logger.info(params)
    return cmd