File size: 10,684 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
from dataclasses import dataclass

import requests
import yaml

from autotrain import logger
from autotrain.project import (
    AutoTrainProject,
    ext_qa_munge_data,
    img_clf_munge_data,
    img_obj_detect_munge_data,
    img_reg_munge_data,
    llm_munge_data,
    sent_transformers_munge_data,
    seq2seq_munge_data,
    tabular_munge_data,
    text_clf_munge_data,
    text_reg_munge_data,
    token_clf_munge_data,
    vlm_munge_data,
)
from autotrain.tasks import TASKS
from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.extractive_question_answering.params import ExtractiveQuestionAnsweringParams
from autotrain.trainers.image_classification.params import ImageClassificationParams
from autotrain.trainers.image_regression.params import ImageRegressionParams
from autotrain.trainers.object_detection.params import ObjectDetectionParams
from autotrain.trainers.sent_transformers.params import SentenceTransformersParams
from autotrain.trainers.seq2seq.params import Seq2SeqParams
from autotrain.trainers.tabular.params import TabularParams
from autotrain.trainers.text_classification.params import TextClassificationParams
from autotrain.trainers.text_regression.params import TextRegressionParams
from autotrain.trainers.token_classification.params import TokenClassificationParams
from autotrain.trainers.vlm.params import VLMTrainingParams


@dataclass
class AutoTrainConfigParser:
    """
    AutoTrainConfigParser is a class responsible for parsing and validating the yaml configuration
    required to run various tasks in the AutoTrain framework. It supports loading configurations
    from both local files and remote URLs, and maps task aliases to their respective parameters
    and data munging functions.

    Attributes:
        config_path (str): Path or URL to the configuration file.
        config (dict): Parsed configuration data.
        task_param_map (dict): Mapping of task names to their parameter classes.
        munge_data_map (dict): Mapping of task names to their data munging functions.
        task_aliases (dict): Mapping of task aliases to their canonical task names.
        task (str): The resolved task name from the configuration.
        backend (str): The backend specified in the configuration.
        parsed_config (dict): The parsed configuration parameters.

    Methods:
        __post_init__(): Initializes the parser, loads the configuration, and validates required fields.
        _parse_config(): Parses the configuration and extracts relevant parameters based on the task.
        run(): Executes the task with the parsed configuration.
    """

    config_path: str

    def __post_init__(self):
        if self.config_path.startswith("http"):
            response = requests.get(self.config_path)
            if response.status_code == 200:
                self.config = yaml.safe_load(response.content)
            else:
                raise ValueError("Failed to retrieve YAML file.")
        else:
            with open(self.config_path, "r") as f:
                self.config = yaml.safe_load(f)

        self.task_param_map = {
            "lm_training": LLMTrainingParams,
            "image_binary_classification": ImageClassificationParams,
            "image_multi_class_classification": ImageClassificationParams,
            "image_object_detection": ObjectDetectionParams,
            "seq2seq": Seq2SeqParams,
            "tabular": TabularParams,
            "text_binary_classification": TextClassificationParams,
            "text_multi_class_classification": TextClassificationParams,
            "text_single_column_regression": TextRegressionParams,
            "text_token_classification": TokenClassificationParams,
            "sentence_transformers": SentenceTransformersParams,
            "image_single_column_regression": ImageRegressionParams,
            "vlm": VLMTrainingParams,
            "text_extractive_question_answering": ExtractiveQuestionAnsweringParams,
        }
        self.munge_data_map = {
            "lm_training": llm_munge_data,
            "tabular": tabular_munge_data,
            "seq2seq": seq2seq_munge_data,
            "image_multi_class_classification": img_clf_munge_data,
            "image_object_detection": img_obj_detect_munge_data,
            "text_multi_class_classification": text_clf_munge_data,
            "text_token_classification": token_clf_munge_data,
            "text_single_column_regression": text_reg_munge_data,
            "sentence_transformers": sent_transformers_munge_data,
            "image_single_column_regression": img_reg_munge_data,
            "vlm": vlm_munge_data,
            "text_extractive_question_answering": ext_qa_munge_data,
        }
        self.task_aliases = {
            "llm": "lm_training",
            "llm-sft": "lm_training",
            "llm-orpo": "lm_training",
            "llm-generic": "lm_training",
            "llm-dpo": "lm_training",
            "llm-reward": "lm_training",
            "image_binary_classification": "image_multi_class_classification",
            "image-binary-classification": "image_multi_class_classification",
            "image_classification": "image_multi_class_classification",
            "image-classification": "image_multi_class_classification",
            "seq2seq": "seq2seq",
            "tabular": "tabular",
            "text_binary_classification": "text_multi_class_classification",
            "text-binary-classification": "text_multi_class_classification",
            "text_classification": "text_multi_class_classification",
            "text-classification": "text_multi_class_classification",
            "text_single_column_regression": "text_single_column_regression",
            "text-single-column-regression": "text_single_column_regression",
            "text_regression": "text_single_column_regression",
            "text-regression": "text_single_column_regression",
            "token_classification": "text_token_classification",
            "token-classification": "text_token_classification",
            "image_object_detection": "image_object_detection",
            "image-object-detection": "image_object_detection",
            "object_detection": "image_object_detection",
            "object-detection": "image_object_detection",
            "st": "sentence_transformers",
            "st:pair": "sentence_transformers",
            "st:pair_class": "sentence_transformers",
            "st:pair_score": "sentence_transformers",
            "st:triplet": "sentence_transformers",
            "st:qa": "sentence_transformers",
            "sentence-transformers:pair": "sentence_transformers",
            "sentence-transformers:pair_class": "sentence_transformers",
            "sentence-transformers:pair_score": "sentence_transformers",
            "sentence-transformers:triplet": "sentence_transformers",
            "sentence-transformers:qa": "sentence_transformers",
            "image_single_column_regression": "image_single_column_regression",
            "image-single-column-regression": "image_single_column_regression",
            "image_regression": "image_single_column_regression",
            "image-regression": "image_single_column_regression",
            "image-scoring": "image_single_column_regression",
            "vlm:captioning": "vlm",
            "vlm:vqa": "vlm",
            "extractive_question_answering": "text_extractive_question_answering",
            "ext_qa": "text_extractive_question_answering",
            "ext-qa": "text_extractive_question_answering",
            "extractive-qa": "text_extractive_question_answering",
        }
        task = self.config.get("task")
        self.task = self.task_aliases.get(task, task)
        if self.task is None:
            raise ValueError("Task is required in the configuration file")
        if self.task not in TASKS:
            raise ValueError(f"Task `{self.task}` is not supported")
        self.backend = self.config.get("backend")
        if self.backend is None:
            raise ValueError("Backend is required in the configuration file")

        logger.info(f"Running task: {self.task}")
        logger.info(f"Using backend: {self.backend}")

        self.parsed_config = self._parse_config()

    def _parse_config(self):
        params = {
            "model": self.config["base_model"],
            "project_name": self.config["project_name"],
        }

        params["data_path"] = self.config["data"]["path"]

        if self.task == "lm_training":
            params["chat_template"] = self.config["data"]["chat_template"]
            if "-" in self.config["task"]:
                params["trainer"] = self.config["task"].split("-")[1]
                if params["trainer"] == "generic":
                    params["trainer"] = "default"
                if params["trainer"] not in ["sft", "orpo", "dpo", "reward", "default"]:
                    raise ValueError("Invalid LLM training task")

        if self.task == "sentence_transformers":
            params["trainer"] = self.config["task"].split(":")[1]

        if self.task == "vlm":
            params["trainer"] = self.config["task"].split(":")[1]

        for k, v in self.config["data"]["column_mapping"].items():
            params[k] = v
        params["train_split"] = self.config["data"]["train_split"]
        params["valid_split"] = self.config["data"]["valid_split"]
        params["log"] = self.config["log"]

        if "hub" in self.config:
            params["username"] = self.config["hub"]["username"]
            params["token"] = self.config["hub"]["token"]
            params["push_to_hub"] = self.config["hub"]["push_to_hub"]
        else:
            params["username"] = None
            params["token"] = None
            params["push_to_hub"] = False

        if params["username"]:
            if params["username"].startswith("${"):
                params["username"] = os.environ.get(params["username"][2:-1])

        if params["token"]:
            if params["token"].startswith("${"):
                params["token"] = os.environ.get(params["token"][2:-1])

        other_params = self.config.get("params")
        if other_params:
            params.update(other_params)

        return params

    def run(self):
        _params = self.task_param_map[self.task](**self.parsed_config)
        logger.info(_params)
        _munge_fn = self.munge_data_map[self.task]
        _munge_fn(_params, local=self.backend.startswith("local"))
        project = AutoTrainProject(params=_params, backend=self.backend)
        job_id = project.create()
        logger.info(f"Job ID: {job_id}")