File size: 24,482 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import os
import shutil
import uuid
from dataclasses import dataclass
from typing import Optional

import pandas as pd
from datasets import ClassLabel, Features, Image, Sequence, Value, load_dataset
from sklearn.model_selection import train_test_split


ALLOWED_EXTENSIONS = ("jpeg", "png", "jpg", "JPG", "JPEG", "PNG")


@dataclass
class ImageClassificationPreprocessor:
    """
    A class used to preprocess image data for classification tasks.

    Attributes
    ----------
    train_data : str
        Path to the training data directory.
    username : str
        Username for the Hugging Face Hub.
    project_name : str
        Name of the project.
    token : str
        Authentication token for the Hugging Face Hub.
    valid_data : Optional[str], optional
        Path to the validation data directory, by default None.
    test_size : Optional[float], optional
        Proportion of the dataset to include in the validation split, by default 0.2.
    seed : Optional[int], optional
        Random seed for reproducibility, by default 42.
    local : Optional[bool], optional
        Whether to save the dataset locally or push to the Hugging Face Hub, by default False.

    Methods
    -------
    __post_init__():
        Validates the structure and contents of the training and validation data directories.
    split(df: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]:
        Splits the dataframe into training and validation sets.
    prepare() -> str:
        Prepares the dataset for training and either saves it locally or pushes it to the Hugging Face Hub.
    """

    train_data: str
    username: str
    project_name: str
    token: str
    valid_data: Optional[str] = None
    test_size: Optional[float] = 0.2
    seed: Optional[int] = 42
    local: Optional[bool] = False

    def __post_init__(self):
        # Check if train data path exists
        if not os.path.exists(self.train_data):
            raise ValueError(f"{self.train_data} does not exist.")

        # Check if train data path contains at least 2 folders
        subfolders = [f.path for f in os.scandir(self.train_data) if f.is_dir()]
        # list subfolders
        if len(subfolders) < 2:
            raise ValueError(f"{self.train_data} should contain at least 2 subfolders.")

        # Check if each subfolder contains at least 5 image files in jpeg, png or jpg format only
        for subfolder in subfolders:
            image_files = [f for f in os.listdir(subfolder) if f.endswith(ALLOWED_EXTENSIONS)]
            if len(image_files) < 5:
                raise ValueError(f"{subfolder} should contain at least 5 jpeg, png or jpg files.")
            # Check if there are no other files except image files in the subfolder
            if len(image_files) != len(os.listdir(subfolder)):
                raise ValueError(f"{subfolder} should not contain any other files except image files.")

            # Check if there are no subfolders inside subfolders
            subfolders_in_subfolder = [f.path for f in os.scandir(subfolder) if f.is_dir()]
            if len(subfolders_in_subfolder) > 0:
                raise ValueError(f"{subfolder} should not contain any subfolders.")

        if self.valid_data:
            # Check if valid data path exists
            if not os.path.exists(self.valid_data):
                raise ValueError(f"{self.valid_data} does not exist.")

            # Check if valid data path contains at least 2 folders
            subfolders = [f.path for f in os.scandir(self.valid_data) if f.is_dir()]

            # make sure that the subfolders in train and valid data are the same
            train_subfolders = set(os.path.basename(f.path) for f in os.scandir(self.train_data) if f.is_dir())
            valid_subfolders = set(os.path.basename(f.path) for f in os.scandir(self.valid_data) if f.is_dir())
            if train_subfolders != valid_subfolders:
                raise ValueError(f"{self.valid_data} should have the same subfolders as {self.train_data}.")

            if len(subfolders) < 2:
                raise ValueError(f"{self.valid_data} should contain at least 2 subfolders.")

            # Check if each subfolder contains at least 5 image files in jpeg, png or jpg format only
            for subfolder in subfolders:
                image_files = [f for f in os.listdir(subfolder) if f.endswith(ALLOWED_EXTENSIONS)]
                if len(image_files) < 5:
                    raise ValueError(f"{subfolder} should contain at least 5 jpeg, png or jpg files.")

                # Check if there are no other files except image files in the subfolder
                if len(image_files) != len(os.listdir(subfolder)):
                    raise ValueError(f"{subfolder} should not contain any other files except image files.")

                # Check if there are no subfolders inside subfolders
                subfolders_in_subfolder = [f.path for f in os.scandir(subfolder) if f.is_dir()]
                if len(subfolders_in_subfolder) > 0:
                    raise ValueError(f"{subfolder} should not contain any subfolders.")

    def split(self, df):
        train_df, valid_df = train_test_split(
            df,
            test_size=self.test_size,
            random_state=self.seed,
            stratify=df["subfolder"],
        )
        train_df = train_df.reset_index(drop=True)
        valid_df = valid_df.reset_index(drop=True)
        return train_df, valid_df

    def prepare(self):
        random_uuid = uuid.uuid4()
        cache_dir = os.environ.get("HF_HOME")
        if not cache_dir:
            cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface")
        data_dir = os.path.join(cache_dir, "autotrain", str(random_uuid))

        if self.valid_data:
            shutil.copytree(self.train_data, os.path.join(data_dir, "train"))
            shutil.copytree(self.valid_data, os.path.join(data_dir, "validation"))

            dataset = load_dataset("imagefolder", data_dir=data_dir)
            dataset = dataset.rename_columns({"image": "autotrain_image", "label": "autotrain_label"})
            if self.local:
                dataset.save_to_disk(f"{self.project_name}/autotrain-data")
            else:
                dataset.push_to_hub(
                    f"{self.username}/autotrain-data-{self.project_name}",
                    private=True,
                    token=self.token,
                )

        else:
            subfolders = [f.path for f in os.scandir(self.train_data) if f.is_dir()]

            image_filenames = []
            subfolder_names = []

            for subfolder in subfolders:
                for filename in os.listdir(subfolder):
                    if filename.endswith(("jpeg", "png", "jpg")):
                        image_filenames.append(filename)
                        subfolder_names.append(os.path.basename(subfolder))

            df = pd.DataFrame({"image_filename": image_filenames, "subfolder": subfolder_names})
            train_df, valid_df = self.split(df)

            for row in train_df.itertuples():
                os.makedirs(os.path.join(data_dir, "train", row.subfolder), exist_ok=True)
                shutil.copy(
                    os.path.join(self.train_data, row.subfolder, row.image_filename),
                    os.path.join(data_dir, "train", row.subfolder, row.image_filename),
                )

            for row in valid_df.itertuples():
                os.makedirs(os.path.join(data_dir, "validation", row.subfolder), exist_ok=True)
                shutil.copy(
                    os.path.join(self.train_data, row.subfolder, row.image_filename),
                    os.path.join(data_dir, "validation", row.subfolder, row.image_filename),
                )

            dataset = load_dataset("imagefolder", data_dir=data_dir)
            dataset = dataset.rename_columns({"image": "autotrain_image", "label": "autotrain_label"})
            if self.local:
                dataset.save_to_disk(f"{self.project_name}/autotrain-data")
            else:
                dataset.push_to_hub(
                    f"{self.username}/autotrain-data-{self.project_name}",
                    private=True,
                    token=self.token,
                )

        if self.local:
            return f"{self.project_name}/autotrain-data"
        return f"{self.username}/autotrain-data-{self.project_name}"


@dataclass
class ObjectDetectionPreprocessor:
    """
    A class to preprocess data for object detection tasks.

    Attributes:
    -----------
    train_data : str
        Path to the training data directory.
    username : str
        Username for the Hugging Face Hub.
    project_name : str
        Name of the project.
    token : str
        Authentication token for the Hugging Face Hub.
    valid_data : Optional[str], default=None
        Path to the validation data directory.
    test_size : Optional[float], default=0.2
        Proportion of the dataset to include in the validation split.
    seed : Optional[int], default=42
        Random seed for reproducibility.
    local : Optional[bool], default=False
        Whether to save the dataset locally or push to the Hugging Face Hub.

    Methods:
    --------
    _process_metadata(data_path):
        Processes the metadata.jsonl file and extracts required columns and categories.
    __post_init__():
        Validates the existence and content of the training and validation data directories.
    split(df):
        Splits the dataframe into training and validation sets.
    prepare():
        Prepares the dataset for training by processing metadata, splitting data, and saving or pushing the dataset.
    """

    train_data: str
    username: str
    project_name: str
    token: str
    valid_data: Optional[str] = None
    test_size: Optional[float] = 0.2
    seed: Optional[int] = 42
    local: Optional[bool] = False

    @staticmethod
    def _process_metadata(data_path):
        metadata = pd.read_json(os.path.join(data_path, "metadata.jsonl"), lines=True)
        # make sure that the metadata.jsonl file contains the required columns: file_name, objects
        if "file_name" not in metadata.columns or "objects" not in metadata.columns:
            raise ValueError(f"{data_path}/metadata.jsonl should contain 'file_name' and 'objects' columns.")

        # keeo only file_name and objects columns
        metadata = metadata[["file_name", "objects"]]
        # inside metadata objects column, values should be bbox, area and category
        # if area does not exist, it should be created by multiplying bbox width and height
        categories = []
        for _, row in metadata.iterrows():
            obj = row["objects"]
            if "bbox" not in obj or "category" not in obj:
                raise ValueError(f"{data_path}/metadata.jsonl should contain 'bbox' and 'category' keys in 'objects'.")
            # keep only bbox, area and category keys
            obj = {k: obj[k] for k in ["bbox", "category"]}
            categories.extend(obj["category"])

        categories = set(categories)

        return metadata, categories

    def __post_init__(self):
        # Check if train data path exists
        if not os.path.exists(self.train_data):
            raise ValueError(f"{self.train_data} does not exist.")

        # check if self.train_data contains at least 5 image files in jpeg, png or jpg format only
        train_image_files = [f for f in os.listdir(self.train_data) if f.endswith(ALLOWED_EXTENSIONS)]
        if len(train_image_files) < 5:
            raise ValueError(f"{self.train_data} should contain at least 5 jpeg, png or jpg files.")

        # check if self.train_data contains a metadata.jsonl file
        if "metadata.jsonl" not in os.listdir(self.train_data):
            raise ValueError(f"{self.train_data} should contain a metadata.jsonl file.")

        # Check if valid data path exists
        if self.valid_data:
            if not os.path.exists(self.valid_data):
                raise ValueError(f"{self.valid_data} does not exist.")

            # check if self.valid_data contains at least 5 image files in jpeg, png or jpg format only
            valid_image_files = [f for f in os.listdir(self.valid_data) if f.endswith(ALLOWED_EXTENSIONS)]
            if len(valid_image_files) < 5:
                raise ValueError(f"{self.valid_data} should contain at least 5 jpeg, png or jpg files.")

            # check if self.valid_data contains a metadata.jsonl file
            if "metadata.jsonl" not in os.listdir(self.valid_data):
                raise ValueError(f"{self.valid_data} should contain a metadata.jsonl file.")

    def split(self, df):
        train_df, valid_df = train_test_split(
            df,
            test_size=self.test_size,
            random_state=self.seed,
        )
        train_df = train_df.reset_index(drop=True)
        valid_df = valid_df.reset_index(drop=True)
        return train_df, valid_df

    def prepare(self):
        random_uuid = uuid.uuid4()
        cache_dir = os.environ.get("HF_HOME")
        if not cache_dir:
            cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface")
        data_dir = os.path.join(cache_dir, "autotrain", str(random_uuid))

        if self.valid_data:
            shutil.copytree(self.train_data, os.path.join(data_dir, "train"))
            shutil.copytree(self.valid_data, os.path.join(data_dir, "validation"))

            train_metadata, train_categories = self._process_metadata(os.path.join(data_dir, "train"))
            valid_metadata, valid_categories = self._process_metadata(os.path.join(data_dir, "validation"))

            train_metadata.to_json(os.path.join(data_dir, "train", "metadata.jsonl"), orient="records", lines=True)
            valid_metadata.to_json(
                os.path.join(data_dir, "validation", "metadata.jsonl"), orient="records", lines=True
            )

            all_categories = train_categories.union(valid_categories)

            features = Features(
                {
                    "image": Image(),
                    "objects": Sequence(
                        {
                            "bbox": Sequence(Value("float32"), length=4),
                            "category": ClassLabel(names=list(all_categories)),
                        }
                    ),
                }
            )

            dataset = load_dataset("imagefolder", data_dir=data_dir, features=features)
            dataset = dataset.rename_columns(
                {
                    "image": "autotrain_image",
                    "objects": "autotrain_objects",
                }
            )

            if self.local:
                dataset.save_to_disk(f"{self.project_name}/autotrain-data")
            else:
                dataset.push_to_hub(
                    f"{self.username}/autotrain-data-{self.project_name}",
                    private=True,
                    token=self.token,
                )
        else:
            metadata = pd.read_json(os.path.join(self.train_data, "metadata.jsonl"), lines=True)
            train_df, valid_df = self.split(metadata)

            # create train and validation folders
            os.makedirs(os.path.join(data_dir, "train"), exist_ok=True)
            os.makedirs(os.path.join(data_dir, "validation"), exist_ok=True)

            # move images to train and validation folders
            for row in train_df.iterrows():
                shutil.copy(
                    os.path.join(self.train_data, row[1]["file_name"]),
                    os.path.join(data_dir, "train", row[1]["file_name"]),
                )

            for row in valid_df.iterrows():
                shutil.copy(
                    os.path.join(self.train_data, row[1]["file_name"]),
                    os.path.join(data_dir, "validation", row[1]["file_name"]),
                )

            # save metadata.jsonl file to train and validation folders
            train_df.to_json(os.path.join(data_dir, "train", "metadata.jsonl"), orient="records", lines=True)
            valid_df.to_json(os.path.join(data_dir, "validation", "metadata.jsonl"), orient="records", lines=True)

            train_metadata, train_categories = self._process_metadata(os.path.join(data_dir, "train"))
            valid_metadata, valid_categories = self._process_metadata(os.path.join(data_dir, "validation"))

            train_metadata.to_json(os.path.join(data_dir, "train", "metadata.jsonl"), orient="records", lines=True)
            valid_metadata.to_json(
                os.path.join(data_dir, "validation", "metadata.jsonl"), orient="records", lines=True
            )

            all_categories = train_categories.union(valid_categories)

            features = Features(
                {
                    "image": Image(),
                    "objects": Sequence(
                        {
                            "bbox": Sequence(Value("float32"), length=4),
                            "category": ClassLabel(names=list(all_categories)),
                        }
                    ),
                }
            )

            dataset = load_dataset("imagefolder", data_dir=data_dir, features=features)
            dataset = dataset.rename_columns(
                {
                    "image": "autotrain_image",
                    "objects": "autotrain_objects",
                }
            )

            if self.local:
                dataset.save_to_disk(f"{self.project_name}/autotrain-data")
            else:
                dataset.push_to_hub(
                    f"{self.username}/autotrain-data-{self.project_name}",
                    private=True,
                    token=self.token,
                )

        if self.local:
            return f"{self.project_name}/autotrain-data"
        return f"{self.username}/autotrain-data-{self.project_name}"


@dataclass
class ImageRegressionPreprocessor:
    train_data: str
    username: str
    project_name: str
    token: str
    valid_data: Optional[str] = None
    test_size: Optional[float] = 0.2
    seed: Optional[int] = 42
    local: Optional[bool] = False

    @staticmethod
    def _process_metadata(data_path):
        metadata = pd.read_json(os.path.join(data_path, "metadata.jsonl"), lines=True)
        # make sure that the metadata.jsonl file contains the required columns: file_name, target
        if "file_name" not in metadata.columns or "target" not in metadata.columns:
            raise ValueError(f"{data_path}/metadata.jsonl should contain 'file_name' and 'target' columns.")

        # keep only file_name and target columns
        metadata = metadata[["file_name", "target"]]
        return metadata

    def __post_init__(self):
        # Check if train data path exists
        if not os.path.exists(self.train_data):
            raise ValueError(f"{self.train_data} does not exist.")

        # check if self.train_data contains at least 5 image files in jpeg, png or jpg format only
        train_image_files = [f for f in os.listdir(self.train_data) if f.endswith(ALLOWED_EXTENSIONS)]
        if len(train_image_files) < 5:
            raise ValueError(f"{self.train_data} should contain at least 5 jpeg, png or jpg files.")

        # check if self.train_data contains a metadata.jsonl file
        if "metadata.jsonl" not in os.listdir(self.train_data):
            raise ValueError(f"{self.train_data} should contain a metadata.jsonl file.")

        # Check if valid data path exists
        if self.valid_data:
            if not os.path.exists(self.valid_data):
                raise ValueError(f"{self.valid_data} does not exist.")

            # check if self.valid_data contains at least 5 image files in jpeg, png or jpg format only
            valid_image_files = [f for f in os.listdir(self.valid_data) if f.endswith(ALLOWED_EXTENSIONS)]
            if len(valid_image_files) < 5:
                raise ValueError(f"{self.valid_data} should contain at least 5 jpeg, png or jpg files.")

            # check if self.valid_data contains a metadata.jsonl file
            if "metadata.jsonl" not in os.listdir(self.valid_data):
                raise ValueError(f"{self.valid_data} should contain a metadata.jsonl file.")

    def split(self, df):
        train_df, valid_df = train_test_split(
            df,
            test_size=self.test_size,
            random_state=self.seed,
        )
        train_df = train_df.reset_index(drop=True)
        valid_df = valid_df.reset_index(drop=True)
        return train_df, valid_df

    def prepare(self):
        random_uuid = uuid.uuid4()
        cache_dir = os.environ.get("HF_HOME")
        if not cache_dir:
            cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface")
        data_dir = os.path.join(cache_dir, "autotrain", str(random_uuid))

        if self.valid_data:
            shutil.copytree(self.train_data, os.path.join(data_dir, "train"))
            shutil.copytree(self.valid_data, os.path.join(data_dir, "validation"))

            train_metadata = self._process_metadata(os.path.join(data_dir, "train"))
            valid_metadata = self._process_metadata(os.path.join(data_dir, "validation"))

            train_metadata.to_json(os.path.join(data_dir, "train", "metadata.jsonl"), orient="records", lines=True)
            valid_metadata.to_json(
                os.path.join(data_dir, "validation", "metadata.jsonl"), orient="records", lines=True
            )

            dataset = load_dataset("imagefolder", data_dir=data_dir)
            dataset = dataset.rename_columns(
                {
                    "image": "autotrain_image",
                    "target": "autotrain_label",
                }
            )

            if self.local:
                dataset.save_to_disk(f"{self.project_name}/autotrain-data")
            else:
                dataset.push_to_hub(
                    f"{self.username}/autotrain-data-{self.project_name}",
                    private=True,
                    token=self.token,
                )
        else:
            metadata = pd.read_json(os.path.join(self.train_data, "metadata.jsonl"), lines=True)
            train_df, valid_df = self.split(metadata)

            # create train and validation folders
            os.makedirs(os.path.join(data_dir, "train"), exist_ok=True)
            os.makedirs(os.path.join(data_dir, "validation"), exist_ok=True)

            # move images to train and validation folders
            for row in train_df.iterrows():
                shutil.copy(
                    os.path.join(self.train_data, row[1]["file_name"]),
                    os.path.join(data_dir, "train", row[1]["file_name"]),
                )

            for row in valid_df.iterrows():
                shutil.copy(
                    os.path.join(self.train_data, row[1]["file_name"]),
                    os.path.join(data_dir, "validation", row[1]["file_name"]),
                )

            # save metadata.jsonl file to train and validation folders
            train_df.to_json(os.path.join(data_dir, "train", "metadata.jsonl"), orient="records", lines=True)
            valid_df.to_json(os.path.join(data_dir, "validation", "metadata.jsonl"), orient="records", lines=True)

            train_metadata = self._process_metadata(os.path.join(data_dir, "train"))
            valid_metadata = self._process_metadata(os.path.join(data_dir, "validation"))

            train_metadata.to_json(os.path.join(data_dir, "train", "metadata.jsonl"), orient="records", lines=True)
            valid_metadata.to_json(
                os.path.join(data_dir, "validation", "metadata.jsonl"), orient="records", lines=True
            )

            dataset = load_dataset("imagefolder", data_dir=data_dir)
            dataset = dataset.rename_columns(
                {
                    "image": "autotrain_image",
                    "target": "autotrain_label",
                }
            )

            if self.local:
                dataset.save_to_disk(f"{self.project_name}/autotrain-data")
            else:
                dataset.push_to_hub(
                    f"{self.username}/autotrain-data-{self.project_name}",
                    private=True,
                    token=self.token,
                )

        if self.local:
            return f"{self.project_name}/autotrain-data"
        return f"{self.username}/autotrain-data-{self.project_name}"