File size: 4,189 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from peft import LoraConfig
from transformers import AutoConfig, AutoModelForCausalLM, BitsAndBytesConfig
from transformers.trainer_callback import PrinterCallback
from trl import DPOConfig, DPOTrainer

from autotrain import logger
from autotrain.trainers.clm import utils
from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.common import ALLOW_REMOTE_CODE


def train(config):
    logger.info("Starting DPO training...")
    if isinstance(config, dict):
        config = LLMTrainingParams(**config)
    train_data, valid_data = utils.process_input_data(config)
    tokenizer = utils.get_tokenizer(config)
    train_data, valid_data = utils.process_data_with_chat_template(config, tokenizer, train_data, valid_data)

    logging_steps = utils.configure_logging_steps(config, train_data, valid_data)
    training_args = utils.configure_training_args(config, logging_steps)
    config = utils.configure_block_size(config, tokenizer)

    training_args["max_length"] = config.block_size
    training_args["max_prompt_length"] = config.max_prompt_length
    training_args["max_target_length"] = config.max_completion_length
    training_args["beta"] = config.dpo_beta
    args = DPOConfig(**training_args)

    logger.info("loading model config...")
    model_config = AutoConfig.from_pretrained(
        config.model,
        token=config.token,
        trust_remote_code=ALLOW_REMOTE_CODE,
        use_cache=config.disable_gradient_checkpointing,
    )

    logger.info("loading model...")
    if config.peft:
        if config.quantization == "int4":
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=False,
            )
        elif config.quantization == "int8":
            bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        else:
            bnb_config = None

        model = AutoModelForCausalLM.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            quantization_config=bnb_config,
            trust_remote_code=ALLOW_REMOTE_CODE,
            use_flash_attention_2=config.use_flash_attention_2,
        )
        logger.info("Using PEFT, model_ref will be set to None")
        model_ref = None
    else:
        model = AutoModelForCausalLM.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
            use_flash_attention_2=config.use_flash_attention_2,
        )
        if config.model_ref is not None:
            model_ref = AutoModelForCausalLM.from_pretrained(
                config.model_ref,
                config=model_config,
                token=config.token,
                trust_remote_code=ALLOW_REMOTE_CODE,
                use_flash_attention_2=config.use_flash_attention_2,
            )
        else:
            model_ref = None

    logger.info(f"model dtype: {model.dtype}")
    model.resize_token_embeddings(len(tokenizer))

    if model_ref is not None:
        logger.info(f"model_ref dtype: {model_ref.dtype}")
        model_ref.resize_token_embeddings(len(tokenizer))

    if config.peft:
        peft_config = LoraConfig(
            r=config.lora_r,
            lora_alpha=config.lora_alpha,
            lora_dropout=config.lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
            target_modules=utils.get_target_modules(config),
        )

    logger.info("creating trainer")
    callbacks = utils.get_callbacks(config)
    trainer_args = dict(
        args=args,
        model=model,
        callbacks=callbacks,
    )

    trainer = DPOTrainer(
        **trainer_args,
        ref_model=model_ref,
        train_dataset=train_data,
        eval_dataset=valid_data if config.valid_split is not None else None,
        processing_class=tokenizer,
        peft_config=peft_config if config.peft else None,
    )

    trainer.remove_callback(PrinterCallback)
    trainer.train()
    utils.post_training_steps(config, trainer)