File size: 4,370 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from functools import partial

import torch
from peft import LoraConfig
from transformers import AutoConfig, AutoModelForSequenceClassification, BitsAndBytesConfig
from transformers.trainer_callback import PrinterCallback
from trl import RewardConfig, RewardTrainer

from autotrain import logger
from autotrain.trainers.clm import utils
from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.trainers.common import ALLOW_REMOTE_CODE


def train(config):
    logger.info("Starting Reward training...")
    if isinstance(config, dict):
        config = LLMTrainingParams(**config)
    train_data, valid_data = utils.process_input_data(config)
    tokenizer = utils.get_tokenizer(config)
    train_data, valid_data = utils.process_data_with_chat_template(config, tokenizer, train_data, valid_data)

    logging_steps = utils.configure_logging_steps(config, train_data, valid_data)
    training_args = utils.configure_training_args(config, logging_steps)
    config = utils.configure_block_size(config, tokenizer)
    training_args["max_length"] = config.block_size
    args = RewardConfig(**training_args)

    logger.info("loading model config...")
    model_config = AutoConfig.from_pretrained(
        config.model,
        token=config.token,
        trust_remote_code=ALLOW_REMOTE_CODE,
        use_cache=config.disable_gradient_checkpointing,
    )

    model_config.num_labels = 1
    model_config.pad_token_id = tokenizer.pad_token_id
    model_config.pad_token = tokenizer.pad_token

    logger.info("loading model...")
    if config.peft:
        if config.quantization == "int4":
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=False,
            )
        elif config.quantization == "int8":
            bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        else:
            bnb_config = None

        model = AutoModelForSequenceClassification.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            quantization_config=bnb_config,
            trust_remote_code=ALLOW_REMOTE_CODE,
            use_flash_attention_2=config.use_flash_attention_2,
        )
    else:
        model = AutoModelForSequenceClassification.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
            use_flash_attention_2=config.use_flash_attention_2,
        )

    logger.info(f"model dtype: {model.dtype}")
    model.resize_token_embeddings(len(tokenizer))

    if config.peft:
        peft_config = LoraConfig(
            r=config.lora_r,
            lora_alpha=config.lora_alpha,
            lora_dropout=config.lora_dropout,
            bias="none",
            task_type="SEQ_CLS",
            target_modules=utils.get_target_modules(config),
        )

    reward_proc = partial(utils.preprocess_reward, tokenizer=tokenizer)
    train_data = train_data.map(
        reward_proc,
        batched=True,
        num_proc=4,
        desc="Running tokenizer on train dataset",
    )
    train_data = train_data.filter(
        lambda x: len(x["input_ids_chosen"]) <= config.block_size and len(x["input_ids_rejected"]) <= config.block_size
    )
    if config.valid_split is not None:
        valid_data = valid_data.map(
            reward_proc,
            batched=True,
            num_proc=4,
            desc="Running tokenizer on validation dataset",
        )
        valid_data = valid_data.filter(
            lambda x: len(x["input_ids_chosen"]) <= config.block_size
            and len(x["input_ids_rejected"]) <= config.block_size
        )

    logger.info("creating trainer")
    callbacks = utils.get_callbacks(config)
    trainer_args = dict(
        args=args,
        model=model,
        callbacks=callbacks,
    )
    trainer = RewardTrainer(
        **trainer_args,
        train_dataset=train_data,
        eval_dataset=valid_data if config.valid_split is not None else None,
        peft_config=peft_config if config.peft else None,
        processing_class=tokenizer,
    )

    trainer.remove_callback(PrinterCallback)
    trainer.train()
    utils.post_training_steps(config, trainer)