Spaces:
Sleeping
Sleeping
File size: 40,976 Bytes
33d4721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
import ast
import gc
import os
from enum import Enum
from itertools import chain
import requests
import torch
from accelerate.state import PartialState
from datasets import load_dataset, load_from_disk
from huggingface_hub import HfApi
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from autotrain import is_unsloth_available, logger
from autotrain.trainers.clm.callbacks import LoadBestPeftModelCallback, SavePeftModelCallback
from autotrain.trainers.common import (
ALLOW_REMOTE_CODE,
LossLoggingCallback,
TrainStartCallback,
UploadLogs,
pause_space,
remove_autotrain_data,
save_training_params,
)
DEFAULT_CHAT_TEMPLATE = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
CHATML_CHAT_TEMPLATE = "{% for message in messages %}\n{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% if loop.last and add_generation_prompt %}{{'<|im_start|>assistant\n' }}{% endif %}{% endfor %}"
ZEPHYR_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
TARGET_MODULES = {
"Salesforce/codegen25-7b-multi": "q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj",
}
MODEL_CARD = """
---
tags:
- autotrain
- text-generation-inference
- text-generation{peft}
library_name: transformers{base_model}
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other{dataset_tag}
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{{"role": "user", "content": "hi"}}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
"""
class ZephyrSpecialTokens(str, Enum):
USER = "<|user|>"
ASSISTANT = "<|assistant|>"
SYSTEM = "<|system|>"
EOS_TOKEN = "</s>"
BOS_TOKEN = "<s>"
PAD_TOKEN = "<pad>"
@classmethod
def list(cls):
return [c.value for c in cls]
class ChatmlSpecialTokens(str, Enum):
USER = "<|im_start|>user"
ASSISTANT = "<|im_start|>assistant"
SYSTEM = "<|im_start|>system"
EOS_TOKEN = "<|im_end|>"
BOS_TOKEN = "<s>"
PAD_TOKEN = "<pad>"
@classmethod
def list(cls):
return [c.value for c in cls]
def preprocess_reward(examples, tokenizer):
"""
Preprocesses the reward data by tokenizing the chosen and rejected examples.
Args:
examples (dict): A dictionary containing two keys, "chosen" and "rejected", each mapping to a list of text examples.
tokenizer (PreTrainedTokenizer): A tokenizer instance from the Hugging Face library used to tokenize the text examples.
Returns:
dict: A dictionary with the following keys:
- "input_ids_chosen": List of tokenized input IDs for the chosen examples.
- "attention_mask_chosen": List of attention masks for the chosen examples.
- "input_ids_rejected": List of tokenized input IDs for the rejected examples.
- "attention_mask_rejected": List of attention masks for the rejected examples.
"""
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
tokenized_chosen = tokenizer(chosen, truncation=True)
tokenized_rejected = tokenizer(rejected, truncation=True)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])
return new_examples
def get_target_modules(config):
"""
Determines the target modules based on the provided configuration.
Args:
config (object): Configuration object that contains the following attributes:
- target_modules (str or None): Specifies the target modules. It can be:
- None: Returns the default target modules for the model specified in the config.
- An empty string: Returns the default target modules for the model specified in the config.
- "all-linear": Returns the string "all-linear".
- A comma-separated string: Returns a list of target modules split by commas.
Returns:
list or str: A list of target modules or a specific string ("all-linear") based on the configuration.
"""
if config.target_modules is None:
return TARGET_MODULES.get(config.model)
if config.target_modules.strip() == "":
return TARGET_MODULES.get(config.model)
if config.target_modules.strip().lower() == "all-linear":
return "all-linear"
return config.target_modules.split(",")
def group_texts(examples, config):
"""
Groups texts into chunks of a specified block size.
Args:
examples (dict): A dictionary where keys are feature names and values are lists of lists containing text data.
config (object): A configuration object that contains the block_size attribute.
Returns:
dict: A dictionary with the same keys as the input examples, where each value is a list of chunks of text data.
Additionally, a "labels" key is added with the same value as the "input_ids" key.
"""
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= config.block_size:
total_length = (total_length // config.block_size) * config.block_size
else:
total_length = 0
# Split by chunks of max_len.
result = {
k: [t[i : i + config.block_size] for i in range(0, total_length, config.block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
def tokenize(examples, tokenizer, config):
"""
Tokenizes the input examples using the provided tokenizer and configuration.
Args:
examples (dict): A dictionary containing the input examples to be tokenized.
tokenizer (PreTrainedTokenizer): The tokenizer to be used for tokenizing the examples.
config (object): Configuration object that contains the text column name.
Returns:
dict: A dictionary containing the tokenized output.
"""
output = tokenizer(examples[config.text_column])
return output
def merge_adapter(base_model_path, target_model_path, adapter_path):
"""
Merges an adapter into a base model and saves the resulting model and tokenizer.
Args:
base_model_path (str): Path to the base model directory.
target_model_path (str): Path to the directory where the merged model and tokenizer will be saved.
adapter_path (str): Path to the adapter model directory.
Raises:
RuntimeError: If resizing token embeddings fails without padding to a multiple of 8.
"""
logger.info("Loading adapter...")
model = AutoModelForCausalLM.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=ALLOW_REMOTE_CODE,
)
tokenizer = AutoTokenizer.from_pretrained(
target_model_path,
trust_remote_code=ALLOW_REMOTE_CODE,
)
try:
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(model, adapter_path)
except RuntimeError:
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=8)
model = PeftModel.from_pretrained(model, adapter_path)
model = model.merge_and_unload()
logger.info("Saving target model...")
model.save_pretrained(target_model_path)
tokenizer.save_pretrained(target_model_path)
def create_model_card(config):
"""
Generates a model card string based on the provided configuration.
Args:
config (object): Configuration object with the following attributes:
- peft (bool): Indicates if PEFT (Parameter-Efficient Fine-Tuning) is used.
- data_path (str): Path to the dataset.
- project_name (str): Name of the project.
- model (str): Path or identifier of the model.
Returns:
str: A formatted model card string.
"""
if config.peft:
peft = "\n- peft"
else:
peft = ""
if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
dataset_tag = ""
else:
dataset_tag = f"\ndatasets:\n- {config.data_path}"
if os.path.isdir(config.model):
base_model = ""
else:
base_model = f"\nbase_model: {config.model}"
model_card = MODEL_CARD.format(
dataset_tag=dataset_tag,
peft=peft,
base_model=base_model,
)
return model_card.strip()
def pause_endpoint(params):
"""
Pauses a Hugging Face endpoint using the provided parameters.
Args:
params (object): An object containing the necessary parameters, including:
- token (str): The authorization token to access the Hugging Face API.
Returns:
dict: The JSON response from the API call.
Raises:
KeyError: If the "ENDPOINT_ID" environment variable is not set.
requests.exceptions.RequestException: If there is an issue with the API request.
"""
endpoint_id = os.environ["ENDPOINT_ID"]
username = endpoint_id.split("/")[0]
project_name = endpoint_id.split("/")[1]
api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause"
headers = {"Authorization": f"Bearer {params.token}"}
r = requests.post(api_url, headers=headers, timeout=30)
return r.json()
def apply_chat_template(
example,
tokenizer,
config,
):
"""
Applies a chat template to the given example based on the specified configuration.
Args:
example (dict): The input example containing the text data to be processed.
tokenizer (object): The tokenizer to be used for applying the chat template.
config (object): Configuration object containing the following attributes:
- trainer (str): Specifies the type of trainer. Can be "default", "sft", "reward", "dpo", or "orpo".
- text_column (str): The key in the example dict that contains the text data.
- chat_template (str): Specifies the chat template to be used. Relevant for "reward" and "dpo" trainers.
Returns:
dict: The modified example with the chat template applied.
Raises:
ValueError: If the required keys are not found in the example for "reward", "dpo", or "orpo" trainers.
"""
# kudos to Hugging Face H4 Team for this snippet
if config.trainer in ("default", "sft"):
messages = example[config.text_column]
if isinstance(messages, str):
messages = ast.literal_eval(messages)
example[config.text_column] = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False
)
elif config.trainer == "reward":
if all(k in example.keys() for k in ("chosen", "rejected")):
chosen_messages = example["chosen"]
rejected_messages = example["rejected"]
if isinstance(chosen_messages, str):
chosen_messages = ast.literal_eval(chosen_messages)
if isinstance(rejected_messages, str):
rejected_messages = ast.literal_eval(rejected_messages)
if config.chat_template == "zephyr" and chosen_messages[0]["role"] != "system":
chosen_messages.insert(0, {"role": "system", "content": ""})
if config.chat_template == "zephyr" and rejected_messages[0]["role"] != "system":
rejected_messages.insert(0, {"role": "system", "content": ""})
example["chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
example["rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
else:
raise ValueError(
f"Could not format example as dialogue for `rm/orpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
)
elif config.trainer in ("dpo", "orpo"):
if all(k in example.keys() for k in ("chosen", "rejected")):
# For DPO, the inputs are triples of (prompt, chosen, rejected), where `chosen` and `rejected` are the final turn of a dialogue
# We therefore need to extract the N-1 turns to form the prompt
if isinstance(example["chosen"], str):
example["chosen"] = ast.literal_eval(example["chosen"])
if isinstance(example["rejected"], str):
example["rejected"] = ast.literal_eval(example["rejected"])
prompt_messages = example["chosen"][:-1]
if config.chat_template == "zephyr" and example["chosen"][0]["role"] != "system":
prompt_messages.insert(0, {"role": "system", "content": ""})
chosen_messages = example["chosen"][-1:]
rejected_messages = example["rejected"][-1:]
example["chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
example["rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
example["prompt"] = tokenizer.apply_chat_template(prompt_messages, tokenize=False)
else:
raise ValueError(
f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
)
return example
def post_training_steps(config, trainer):
"""
Perform post-training steps including saving the model, creating a model card, merging adapter weights,
and optionally pushing the model to the Hugging Face Hub.
Args:
config (object): Configuration object containing various settings and parameters.
trainer (object): Trainer object used for training the model.
Steps:
1. Save the trained model and set `use_cache` to True.
2. Create a model card and save it as README.md in the output directory.
3. If PEFT (Parameter-Efficient Fine-Tuning) and adapter merging are enabled:
- Delete the trainer object and clear CUDA cache.
- Merge adapter weights into the base model.
- Remove adapter weight files from the output directory.
4. If pushing to the Hugging Face Hub is enabled:
- Remove training data folder.
- Push the model to the Hugging Face Hub repository.
5. Pause the space if the process index is 0.
Raises:
Exception: If merging adapter weights fails.
"""
logger.info("Finished training, saving model...")
trainer.model.config.use_cache = True
trainer.save_model(config.project_name)
model_card = create_model_card(config)
# save model card to output directory as README.md
with open(f"{config.project_name}/README.md", "w", encoding="utf-8") as f:
f.write(model_card)
if config.peft and config.merge_adapter:
del trainer
gc.collect()
torch.cuda.empty_cache()
logger.info("Merging adapter weights...")
try:
merge_adapter(
base_model_path=config.model,
target_model_path=config.project_name,
adapter_path=config.project_name,
)
# remove adapter weights: adapter_*
for file in os.listdir(config.project_name):
if file.startswith("adapter_"):
os.remove(f"{config.project_name}/{file}")
except Exception as e:
logger.warning(f"Failed to merge adapter weights: {e}")
logger.warning("Skipping adapter merge. Only adapter weights will be saved.")
if config.push_to_hub:
if PartialState().process_index == 0:
# remove data folder
remove_autotrain_data(config)
logger.info("Pushing model to hub...")
save_training_params(config)
api = HfApi(token=config.token)
api.create_repo(
repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True, exist_ok=True
)
api.upload_folder(
folder_path=config.project_name,
repo_id=f"{config.username}/{config.project_name}",
repo_type="model",
)
if PartialState().process_index == 0:
pause_space(config)
def process_input_data(config):
"""
Processes input data based on the provided configuration.
Args:
config (object): Configuration object containing the following attributes:
- data_path (str): Path to the dataset.
- project_name (str): Name of the project.
- train_split (str): Split name for training data.
- valid_split (str, optional): Split name for validation data.
- token (str, optional): Token for accessing the dataset.
- text_column (str): Name of the text column.
- rejected_text_column (str): Name of the rejected text column.
- prompt_text_column (str): Name of the prompt text column.
- trainer (str): Type of trainer (e.g., "dpo", "reward", "orpo").
Returns:
tuple: A tuple containing:
- train_data (Dataset): Processed training dataset.
- valid_data (Dataset or None): Processed validation dataset if valid_split is provided, otherwise None.
"""
if config.data_path == f"{config.project_name}/autotrain-data":
logger.info("loading dataset from disk")
train_data = load_from_disk(config.data_path)[config.train_split]
else:
if ":" in config.train_split:
dataset_config_name, split = config.train_split.split(":")
train_data = load_dataset(
config.data_path,
name=dataset_config_name,
split=split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
else:
train_data = load_dataset(
config.data_path,
split=config.train_split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
# rename columns for reward trainer
if config.trainer in ("dpo", "reward", "orpo"):
if not (config.text_column == "chosen" and config.text_column in train_data.column_names):
train_data = train_data.rename_column(config.text_column, "chosen")
if not (config.rejected_text_column == "rejected" and config.rejected_text_column in train_data.column_names):
train_data = train_data.rename_column(config.rejected_text_column, "rejected")
if config.trainer in ("dpo", "orpo"):
if not (config.prompt_text_column == "prompt" and config.prompt_text_column in train_data.column_names):
train_data = train_data.rename_column(config.prompt_text_column, "prompt")
if config.valid_split is not None:
if config.data_path == f"{config.project_name}/autotrain-data":
valid_data = load_from_disk(config.data_path)[config.valid_split]
else:
if ":" in config.valid_split:
dataset_config_name, split = config.valid_split.split(":")
valid_data = load_dataset(
config.data_path,
name=dataset_config_name,
split=split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
else:
valid_data = load_dataset(
config.data_path,
split=config.valid_split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
if config.trainer in ("dpo", "reward", "orpo"):
if not (config.text_column == "chosen" and config.text_column in valid_data.column_names):
valid_data = valid_data.rename_column(config.text_column, "chosen")
if not (
config.rejected_text_column == "rejected" and config.rejected_text_column in valid_data.column_names
):
valid_data = valid_data.rename_column(config.rejected_text_column, "rejected")
if config.trainer in ("dpo", "reward"):
if not (config.prompt_text_column == "prompt" and config.prompt_text_column in valid_data.column_names):
valid_data = valid_data.rename_column(config.prompt_text_column, "prompt")
else:
valid_data = None
logger.info(f"Train data: {train_data}")
logger.info(f"Valid data: {valid_data}")
return train_data, valid_data
def get_tokenizer(config):
"""
Initializes and returns a tokenizer based on the provided configuration.
Args:
config (object): Configuration object containing the following attributes:
- chat_template (str): The chat template type, either "chatml" or "zephyr".
- model (str): The model identifier to load the tokenizer from.
- token (str): The token to use for the tokenizer.
- model_max_length (int): The maximum length of the model.
- padding (str): The padding side, either "left" or "right".
Returns:
tokenizer (PreTrainedTokenizer): The initialized tokenizer with the specified configuration.
"""
special_tokens = None
chat_template = None
if config.chat_template == "chatml":
special_tokens = ChatmlSpecialTokens
chat_template = CHATML_CHAT_TEMPLATE
elif config.chat_template == "zephyr":
special_tokens = ZephyrSpecialTokens
chat_template = ZEPHYR_CHAT_TEMPLATE
if special_tokens is not None:
tokenizer = AutoTokenizer.from_pretrained(
config.model,
pad_token=special_tokens.PAD_TOKEN.value,
bos_token=special_tokens.BOS_TOKEN.value,
eos_token=special_tokens.EOS_TOKEN.value,
additional_special_tokens=special_tokens.list(),
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
tokenizer.chat_template = chat_template
else:
tokenizer = AutoTokenizer.from_pretrained(
config.model, token=config.token, trust_remote_code=ALLOW_REMOTE_CODE
)
if tokenizer.chat_template is None:
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
if tokenizer.model_max_length > 2048:
tokenizer.model_max_length = config.model_max_length
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
if getattr(tokenizer, "pad_token_id", None) is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
if config.padding in ("left", "right"):
tokenizer.padding_side = config.padding
return tokenizer
def process_data_with_chat_template(config, tokenizer, train_data, valid_data):
"""
Processes training and validation data using a specified chat template.
Args:
config (object): Configuration object containing settings and parameters.
tokenizer (object): Tokenizer object used for tokenizing the data.
train_data (Dataset): Training dataset to be processed.
valid_data (Dataset): Validation dataset to be processed.
Returns:
tuple: A tuple containing the processed training and validation datasets.
Notes:
- If `config.chat_template` is one of ("chatml", "zephyr", "tokenizer"), the chat template will be applied.
- Logs information about the application of the chat template.
- For ORPO/DPO, the `prompt` will be extracted from chosen messages.
- If `config.valid_split` is not None, the validation data will also be processed.
"""
valid_data = None
if config.chat_template in ("chatml", "zephyr", "tokenizer"):
logger.info("Applying chat template")
logger.info("For ORPO/DPO, `prompt` will be extracted from chosen messages")
train_data = train_data.map(
apply_chat_template,
fn_kwargs={
"tokenizer": tokenizer,
"config": config,
},
)
if config.valid_split is not None:
valid_data = valid_data.map(
apply_chat_template,
fn_kwargs={
"tokenizer": tokenizer,
"config": config,
},
)
return train_data, valid_data
def configure_logging_steps(config, train_data, valid_data):
"""
Configures the logging steps for training based on the provided configuration and data.
Parameters:
config (object): Configuration object containing training parameters, including `logging_steps`, `valid_split`, and `batch_size`.
train_data (iterable): Training dataset.
valid_data (iterable): Validation dataset.
Returns:
int: The number of logging steps to be used during training.
Notes:
- If `config.logging_steps` is set to -1, the function calculates logging steps based on 20% of the length of the validation data (if `valid_split` is provided) or the training data.
- The calculated logging steps are constrained to be between 1 and 25.
- If `config.logging_steps` is not -1, the function uses the provided value.
"""
logger.info("configuring logging steps")
if config.logging_steps == -1:
if config.valid_split is not None:
logging_steps = int(0.2 * len(valid_data) / config.batch_size)
else:
logging_steps = int(0.2 * len(train_data) / config.batch_size)
if logging_steps == 0:
logging_steps = 1
if logging_steps > 25:
logging_steps = 25
config.logging_steps = logging_steps
else:
logging_steps = config.logging_steps
logger.info(f"Logging steps: {logging_steps}")
return logging_steps
def configure_training_args(config, logging_steps):
"""
Configures the training arguments for a language model based on the provided configuration.
Args:
config (object): Configuration object containing various training parameters.
logging_steps (int): Number of steps between logging events.
Returns:
dict: A dictionary containing the configured training arguments.
The configuration object `config` should have the following attributes:
- project_name (str): The name of the project, used as the output directory.
- batch_size (int): Batch size for both training and evaluation.
- lr (float): Learning rate.
- epochs (int): Number of training epochs.
- eval_strategy (str): Evaluation strategy, e.g., "steps" or "epoch".
- valid_split (float or None): Validation split ratio. If None, evaluation is disabled.
- save_total_limit (int): Maximum number of checkpoints to save.
- gradient_accumulation (int): Number of gradient accumulation steps.
- log (str): Logging destination, e.g., "tensorboard".
- auto_find_batch_size (bool): Whether to automatically find the optimal batch size.
- scheduler (str): Learning rate scheduler type.
- optimizer (str): Optimizer type.
- warmup_ratio (float): Warmup ratio for learning rate scheduling.
- weight_decay (float): Weight decay for the optimizer.
- max_grad_norm (float): Maximum gradient norm for clipping.
- disable_gradient_checkpointing (bool): Whether to disable gradient checkpointing.
- peft (bool): Whether to use Parameter-Efficient Fine-Tuning (PEFT).
- quantization (str): Quantization type, e.g., "int4" or "int8".
- mixed_precision (str): Mixed precision type, e.g., "fp16" or "bf16".
The function also sets additional training arguments based on the provided configuration,
such as enabling gradient checkpointing and mixed precision training.
"""
logger.info("configuring training args")
training_args = dict(
output_dir=config.project_name,
per_device_train_batch_size=config.batch_size,
per_device_eval_batch_size=config.batch_size,
learning_rate=config.lr,
num_train_epochs=config.epochs,
eval_strategy=config.eval_strategy if config.valid_split is not None else "no",
logging_steps=logging_steps,
save_total_limit=config.save_total_limit,
save_strategy=config.eval_strategy if config.valid_split is not None else "no",
gradient_accumulation_steps=config.gradient_accumulation,
report_to=config.log,
auto_find_batch_size=config.auto_find_batch_size,
lr_scheduler_type=config.scheduler,
optim=config.optimizer,
warmup_ratio=config.warmup_ratio,
weight_decay=config.weight_decay,
max_grad_norm=config.max_grad_norm,
push_to_hub=False,
load_best_model_at_end=True if config.valid_split is not None else False,
ddp_find_unused_parameters=False,
gradient_checkpointing=not config.disable_gradient_checkpointing,
remove_unused_columns=False,
)
if not config.disable_gradient_checkpointing:
if config.peft and config.quantization in ("int4", "int8"):
training_args["gradient_checkpointing_kwargs"] = {"use_reentrant": True}
else:
training_args["gradient_checkpointing_kwargs"] = {"use_reentrant": False}
if config.mixed_precision == "fp16":
training_args["fp16"] = True
if config.mixed_precision == "bf16":
training_args["bf16"] = True
return training_args
def configure_block_size(config, tokenizer):
"""
Configures the block size for the given configuration and tokenizer.
This function sets the `block_size` attribute in the `config` object based on the `tokenizer`'s maximum model length.
If `config.block_size` is -1, it is set to None. If `config.block_size` is None, it defaults to the tokenizer's
`model_max_length` but not exceeding 1024. If `config.block_size` is specified and exceeds the tokenizer's
`model_max_length`, a warning is logged and the block size is set to the tokenizer's `model_max_length`.
Args:
config (object): Configuration object that contains the `block_size` attribute.
tokenizer (object): Tokenizer object that contains the `model_max_length` attribute.
Returns:
object: The updated configuration object with the `block_size` attribute set.
"""
if config.block_size == -1:
config.block_size = None
if config.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`."
)
block_size = 1024
else:
if config.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({config.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(config.block_size, tokenizer.model_max_length)
config.block_size = block_size
logger.info(f"Using block size {block_size}")
return config
def get_callbacks(config):
"""
Generate a list of callback instances based on the provided configuration.
This function creates a list of callback instances that are used during the training process.
It includes default callbacks for logging and training start, and conditionally adds callbacks
for saving and loading PEFT models based on the configuration and environment settings.
Args:
config (object): Configuration object containing training settings and parameters.
Returns:
list: A list of callback instances to be used during training.
"""
is_deepspeed_enabled = os.environ.get("ACCELERATE_USE_DEEPSPEED", "False").lower() == "true"
callbacks = [UploadLogs(config=config), LossLoggingCallback(), TrainStartCallback()]
if config.peft and not is_deepspeed_enabled:
callbacks.append(SavePeftModelCallback)
if config.valid_split is not None:
callbacks.append(LoadBestPeftModelCallback)
return callbacks
def get_model(config, tokenizer):
"""
Loads and configures a language model based on the provided configuration and tokenizer.
Args:
config (Namespace): Configuration object containing model parameters and settings.
- model (str): The model name or path.
- token (str): Token for accessing the model.
- unsloth (bool): Flag to determine if unsloth is used.
- trainer (str): Type of trainer to use.
- target_modules (str): Target modules for unsloth.
- peft (bool): Flag to determine if PEFT (Parameter-Efficient Fine-Tuning) is used.
- quantization (str): Quantization type, either "int4" or "int8".
- mixed_precision (str): Mixed precision type, either "fp16" or "bf16".
- block_size (int): Maximum sequence length.
- lora_r (int): LoRA rank.
- lora_alpha (int): LoRA alpha.
- lora_dropout (float): LoRA dropout rate.
- seed (int): Random seed.
- disable_gradient_checkpointing (bool): Flag to disable gradient checkpointing.
- use_flash_attention_2 (bool): Flag to use flash attention 2.
tokenizer (PreTrainedTokenizer): Tokenizer to use with the model.
Returns:
PreTrainedModel: The configured language model.
Raises:
ImportError: If unsloth is not available when required.
"""
model_config = AutoConfig.from_pretrained(
config.model,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
model_type = model_config.model_type
unsloth_target_modules = None
can_use_unloth = False
if config.unsloth and is_unsloth_available() and config.trainer in ("default", "sft"):
can_use_unloth = True
if model_type in ("llama", "mistral", "gemma", "qwen2") and config.unsloth:
if config.target_modules.strip().lower() == "all-linear":
unsloth_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
else:
unsloth_target_modules = get_target_modules(config)
else:
can_use_unloth = False
logger.info(f"Can use unsloth: {can_use_unloth}")
if can_use_unloth:
from unsloth import FastLanguageModel
load_in_4bit = False
load_in_8bit = False
if config.peft and config.quantization == "int4":
load_in_4bit = True
elif config.peft and config.quantization == "int8":
load_in_8bit = True
dtype = None
if config.mixed_precision == "fp16":
dtype = torch.float16
elif config.mixed_precision == "bf16":
dtype = torch.bfloat16
model, _ = FastLanguageModel.from_pretrained(
model_name=config.model,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
load_in_4bit=load_in_4bit,
load_in_8bit=load_in_8bit,
max_seq_length=config.block_size,
dtype=dtype,
)
if config.peft:
model = FastLanguageModel.get_peft_model(
model,
r=config.lora_r,
target_modules=unsloth_target_modules,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=config.seed,
max_seq_length=config.block_size,
use_rslora=False,
loftq_config=None,
)
return model
else:
logger.warning("Unsloth not available, continuing without it...")
logger.info("loading model config...")
model_config = AutoConfig.from_pretrained(
config.model,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
use_cache=config.disable_gradient_checkpointing,
)
logger.info("loading model...")
if config.peft:
if config.quantization == "int4":
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False,
)
elif config.quantization == "int8":
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
else:
bnb_config = None
model = AutoModelForCausalLM.from_pretrained(
config.model,
config=model_config,
token=config.token,
quantization_config=bnb_config,
trust_remote_code=ALLOW_REMOTE_CODE,
use_flash_attention_2=config.use_flash_attention_2,
)
else:
model = AutoModelForCausalLM.from_pretrained(
config.model,
config=model_config,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
use_flash_attention_2=config.use_flash_attention_2,
)
logger.info(f"model dtype: {model.dtype}")
model.resize_token_embeddings(len(tokenizer))
if config.trainer != "default":
return model
if config.peft:
logger.info("preparing peft model...")
if config.quantization is not None:
gradient_checkpointing_kwargs = {}
if not config.disable_gradient_checkpointing:
if config.quantization in ("int4", "int8"):
gradient_checkpointing_kwargs = {"use_reentrant": True}
else:
gradient_checkpointing_kwargs = {"use_reentrant": False}
model = prepare_model_for_kbit_training(
model,
use_gradient_checkpointing=not config.disable_gradient_checkpointing,
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs,
)
else:
model.enable_input_require_grads()
peft_config = LoraConfig(
r=config.lora_r,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
target_modules=get_target_modules(config),
)
model = get_peft_model(model, peft_config)
return model
|