File size: 40,976 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
import ast
import gc
import os
from enum import Enum
from itertools import chain

import requests
import torch
from accelerate.state import PartialState
from datasets import load_dataset, load_from_disk
from huggingface_hub import HfApi
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

from autotrain import is_unsloth_available, logger
from autotrain.trainers.clm.callbacks import LoadBestPeftModelCallback, SavePeftModelCallback
from autotrain.trainers.common import (
    ALLOW_REMOTE_CODE,
    LossLoggingCallback,
    TrainStartCallback,
    UploadLogs,
    pause_space,
    remove_autotrain_data,
    save_training_params,
)


DEFAULT_CHAT_TEMPLATE = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
CHATML_CHAT_TEMPLATE = "{% for message in messages %}\n{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% if loop.last and add_generation_prompt %}{{'<|im_start|>assistant\n' }}{% endif %}{% endfor %}"
ZEPHYR_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n'  + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"


IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
TARGET_MODULES = {
    "Salesforce/codegen25-7b-multi": "q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj",
}

MODEL_CARD = """
---
tags:
- autotrain
- text-generation-inference
- text-generation{peft}
library_name: transformers{base_model}
widget:
  - messages:
      - role: user
        content: What is your favorite condiment?
license: other{dataset_tag}
---

# Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).

# Usage

```python

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "PATH_TO_THIS_REPO"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {{"role": "user", "content": "hi"}}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)
```

"""


class ZephyrSpecialTokens(str, Enum):
    USER = "<|user|>"
    ASSISTANT = "<|assistant|>"
    SYSTEM = "<|system|>"
    EOS_TOKEN = "</s>"
    BOS_TOKEN = "<s>"
    PAD_TOKEN = "<pad>"

    @classmethod
    def list(cls):
        return [c.value for c in cls]


class ChatmlSpecialTokens(str, Enum):
    USER = "<|im_start|>user"
    ASSISTANT = "<|im_start|>assistant"
    SYSTEM = "<|im_start|>system"
    EOS_TOKEN = "<|im_end|>"
    BOS_TOKEN = "<s>"
    PAD_TOKEN = "<pad>"

    @classmethod
    def list(cls):
        return [c.value for c in cls]


def preprocess_reward(examples, tokenizer):
    """
    Preprocesses the reward data by tokenizing the chosen and rejected examples.

    Args:
        examples (dict): A dictionary containing two keys, "chosen" and "rejected", each mapping to a list of text examples.
        tokenizer (PreTrainedTokenizer): A tokenizer instance from the Hugging Face library used to tokenize the text examples.

    Returns:
        dict: A dictionary with the following keys:
            - "input_ids_chosen": List of tokenized input IDs for the chosen examples.
            - "attention_mask_chosen": List of attention masks for the chosen examples.
            - "input_ids_rejected": List of tokenized input IDs for the rejected examples.
            - "attention_mask_rejected": List of attention masks for the rejected examples.
    """
    new_examples = {
        "input_ids_chosen": [],
        "attention_mask_chosen": [],
        "input_ids_rejected": [],
        "attention_mask_rejected": [],
    }
    for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
        tokenized_chosen = tokenizer(chosen, truncation=True)
        tokenized_rejected = tokenizer(rejected, truncation=True)

        new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
        new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
        new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
        new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])

    return new_examples


def get_target_modules(config):
    """
    Determines the target modules based on the provided configuration.

    Args:
        config (object): Configuration object that contains the following attributes:
            - target_modules (str or None): Specifies the target modules. It can be:
                - None: Returns the default target modules for the model specified in the config.
                - An empty string: Returns the default target modules for the model specified in the config.
                - "all-linear": Returns the string "all-linear".
                - A comma-separated string: Returns a list of target modules split by commas.

    Returns:
        list or str: A list of target modules or a specific string ("all-linear") based on the configuration.
    """
    if config.target_modules is None:
        return TARGET_MODULES.get(config.model)
    if config.target_modules.strip() == "":
        return TARGET_MODULES.get(config.model)
    if config.target_modules.strip().lower() == "all-linear":
        return "all-linear"
    return config.target_modules.split(",")


def group_texts(examples, config):
    """
    Groups texts into chunks of a specified block size.

    Args:
        examples (dict): A dictionary where keys are feature names and values are lists of lists containing text data.
        config (object): A configuration object that contains the block_size attribute.

    Returns:
        dict: A dictionary with the same keys as the input examples, where each value is a list of chunks of text data.
              Additionally, a "labels" key is added with the same value as the "input_ids" key.
    """
    # Concatenate all texts.
    concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
    # customize this part to your needs.
    if total_length >= config.block_size:
        total_length = (total_length // config.block_size) * config.block_size
    else:
        total_length = 0
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + config.block_size] for i in range(0, total_length, config.block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result


def tokenize(examples, tokenizer, config):
    """
    Tokenizes the input examples using the provided tokenizer and configuration.

    Args:
        examples (dict): A dictionary containing the input examples to be tokenized.
        tokenizer (PreTrainedTokenizer): The tokenizer to be used for tokenizing the examples.
        config (object): Configuration object that contains the text column name.

    Returns:
        dict: A dictionary containing the tokenized output.
    """
    output = tokenizer(examples[config.text_column])
    return output


def merge_adapter(base_model_path, target_model_path, adapter_path):
    """
    Merges an adapter into a base model and saves the resulting model and tokenizer.

    Args:
        base_model_path (str): Path to the base model directory.
        target_model_path (str): Path to the directory where the merged model and tokenizer will be saved.
        adapter_path (str): Path to the adapter model directory.

    Raises:
        RuntimeError: If resizing token embeddings fails without padding to a multiple of 8.
    """
    logger.info("Loading adapter...")
    model = AutoModelForCausalLM.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True,
        trust_remote_code=ALLOW_REMOTE_CODE,
    )

    tokenizer = AutoTokenizer.from_pretrained(
        target_model_path,
        trust_remote_code=ALLOW_REMOTE_CODE,
    )
    try:
        model.resize_token_embeddings(len(tokenizer))
        model = PeftModel.from_pretrained(model, adapter_path)
    except RuntimeError:
        model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=8)
        model = PeftModel.from_pretrained(model, adapter_path)
    model = model.merge_and_unload()

    logger.info("Saving target model...")
    model.save_pretrained(target_model_path)
    tokenizer.save_pretrained(target_model_path)


def create_model_card(config):
    """
    Generates a model card string based on the provided configuration.

    Args:
        config (object): Configuration object with the following attributes:
            - peft (bool): Indicates if PEFT (Parameter-Efficient Fine-Tuning) is used.
            - data_path (str): Path to the dataset.
            - project_name (str): Name of the project.
            - model (str): Path or identifier of the model.

    Returns:
        str: A formatted model card string.
    """
    if config.peft:
        peft = "\n- peft"
    else:
        peft = ""

    if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
        dataset_tag = ""
    else:
        dataset_tag = f"\ndatasets:\n- {config.data_path}"

    if os.path.isdir(config.model):
        base_model = ""
    else:
        base_model = f"\nbase_model: {config.model}"

    model_card = MODEL_CARD.format(
        dataset_tag=dataset_tag,
        peft=peft,
        base_model=base_model,
    )
    return model_card.strip()


def pause_endpoint(params):
    """
    Pauses a Hugging Face endpoint using the provided parameters.

    Args:
        params (object): An object containing the necessary parameters, including:
            - token (str): The authorization token to access the Hugging Face API.

    Returns:
        dict: The JSON response from the API call.

    Raises:
        KeyError: If the "ENDPOINT_ID" environment variable is not set.
        requests.exceptions.RequestException: If there is an issue with the API request.
    """
    endpoint_id = os.environ["ENDPOINT_ID"]
    username = endpoint_id.split("/")[0]
    project_name = endpoint_id.split("/")[1]
    api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause"
    headers = {"Authorization": f"Bearer {params.token}"}
    r = requests.post(api_url, headers=headers, timeout=30)
    return r.json()


def apply_chat_template(
    example,
    tokenizer,
    config,
):
    """
    Applies a chat template to the given example based on the specified configuration.

    Args:
        example (dict): The input example containing the text data to be processed.
        tokenizer (object): The tokenizer to be used for applying the chat template.
        config (object): Configuration object containing the following attributes:
            - trainer (str): Specifies the type of trainer. Can be "default", "sft", "reward", "dpo", or "orpo".
            - text_column (str): The key in the example dict that contains the text data.
            - chat_template (str): Specifies the chat template to be used. Relevant for "reward" and "dpo" trainers.

    Returns:
        dict: The modified example with the chat template applied.

    Raises:
        ValueError: If the required keys are not found in the example for "reward", "dpo", or "orpo" trainers.
    """
    # kudos to Hugging Face H4 Team for this snippet
    if config.trainer in ("default", "sft"):
        messages = example[config.text_column]
        if isinstance(messages, str):
            messages = ast.literal_eval(messages)
        example[config.text_column] = tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=False
        )

    elif config.trainer == "reward":
        if all(k in example.keys() for k in ("chosen", "rejected")):
            chosen_messages = example["chosen"]
            rejected_messages = example["rejected"]
            if isinstance(chosen_messages, str):
                chosen_messages = ast.literal_eval(chosen_messages)
            if isinstance(rejected_messages, str):
                rejected_messages = ast.literal_eval(rejected_messages)

            if config.chat_template == "zephyr" and chosen_messages[0]["role"] != "system":
                chosen_messages.insert(0, {"role": "system", "content": ""})
            if config.chat_template == "zephyr" and rejected_messages[0]["role"] != "system":
                rejected_messages.insert(0, {"role": "system", "content": ""})

            example["chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
            example["rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
        else:
            raise ValueError(
                f"Could not format example as dialogue for `rm/orpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
            )
    elif config.trainer in ("dpo", "orpo"):
        if all(k in example.keys() for k in ("chosen", "rejected")):
            # For DPO, the inputs are triples of (prompt, chosen, rejected), where `chosen` and `rejected` are the final turn of a dialogue
            # We therefore need to extract the N-1 turns to form the prompt
            if isinstance(example["chosen"], str):
                example["chosen"] = ast.literal_eval(example["chosen"])
            if isinstance(example["rejected"], str):
                example["rejected"] = ast.literal_eval(example["rejected"])
            prompt_messages = example["chosen"][:-1]
            if config.chat_template == "zephyr" and example["chosen"][0]["role"] != "system":
                prompt_messages.insert(0, {"role": "system", "content": ""})
            chosen_messages = example["chosen"][-1:]
            rejected_messages = example["rejected"][-1:]
            example["chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
            example["rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
            example["prompt"] = tokenizer.apply_chat_template(prompt_messages, tokenize=False)
    else:
        raise ValueError(
            f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
        )
    return example


def post_training_steps(config, trainer):
    """
    Perform post-training steps including saving the model, creating a model card, merging adapter weights,
    and optionally pushing the model to the Hugging Face Hub.

    Args:
        config (object): Configuration object containing various settings and parameters.
        trainer (object): Trainer object used for training the model.

    Steps:
        1. Save the trained model and set `use_cache` to True.
        2. Create a model card and save it as README.md in the output directory.
        3. If PEFT (Parameter-Efficient Fine-Tuning) and adapter merging are enabled:
            - Delete the trainer object and clear CUDA cache.
            - Merge adapter weights into the base model.
            - Remove adapter weight files from the output directory.
        4. If pushing to the Hugging Face Hub is enabled:
            - Remove training data folder.
            - Push the model to the Hugging Face Hub repository.
        5. Pause the space if the process index is 0.

    Raises:
        Exception: If merging adapter weights fails.
    """
    logger.info("Finished training, saving model...")
    trainer.model.config.use_cache = True
    trainer.save_model(config.project_name)

    model_card = create_model_card(config)

    # save model card to output directory as README.md
    with open(f"{config.project_name}/README.md", "w", encoding="utf-8") as f:
        f.write(model_card)

    if config.peft and config.merge_adapter:
        del trainer
        gc.collect()
        torch.cuda.empty_cache()
        logger.info("Merging adapter weights...")
        try:
            merge_adapter(
                base_model_path=config.model,
                target_model_path=config.project_name,
                adapter_path=config.project_name,
            )
            # remove adapter weights: adapter_*
            for file in os.listdir(config.project_name):
                if file.startswith("adapter_"):
                    os.remove(f"{config.project_name}/{file}")
        except Exception as e:
            logger.warning(f"Failed to merge adapter weights: {e}")
            logger.warning("Skipping adapter merge. Only adapter weights will be saved.")

    if config.push_to_hub:
        if PartialState().process_index == 0:
            # remove data folder
            remove_autotrain_data(config)
            logger.info("Pushing model to hub...")
            save_training_params(config)
            api = HfApi(token=config.token)
            api.create_repo(
                repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True, exist_ok=True
            )
            api.upload_folder(
                folder_path=config.project_name,
                repo_id=f"{config.username}/{config.project_name}",
                repo_type="model",
            )

    if PartialState().process_index == 0:
        pause_space(config)


def process_input_data(config):
    """
    Processes input data based on the provided configuration.

    Args:
        config (object): Configuration object containing the following attributes:
            - data_path (str): Path to the dataset.
            - project_name (str): Name of the project.
            - train_split (str): Split name for training data.
            - valid_split (str, optional): Split name for validation data.
            - token (str, optional): Token for accessing the dataset.
            - text_column (str): Name of the text column.
            - rejected_text_column (str): Name of the rejected text column.
            - prompt_text_column (str): Name of the prompt text column.
            - trainer (str): Type of trainer (e.g., "dpo", "reward", "orpo").

    Returns:
        tuple: A tuple containing:
            - train_data (Dataset): Processed training dataset.
            - valid_data (Dataset or None): Processed validation dataset if valid_split is provided, otherwise None.
    """
    if config.data_path == f"{config.project_name}/autotrain-data":
        logger.info("loading dataset from disk")
        train_data = load_from_disk(config.data_path)[config.train_split]
    else:
        if ":" in config.train_split:
            dataset_config_name, split = config.train_split.split(":")
            train_data = load_dataset(
                config.data_path,
                name=dataset_config_name,
                split=split,
                token=config.token,
                trust_remote_code=ALLOW_REMOTE_CODE,
            )
        else:
            train_data = load_dataset(
                config.data_path,
                split=config.train_split,
                token=config.token,
                trust_remote_code=ALLOW_REMOTE_CODE,
            )
    # rename columns for reward trainer
    if config.trainer in ("dpo", "reward", "orpo"):
        if not (config.text_column == "chosen" and config.text_column in train_data.column_names):
            train_data = train_data.rename_column(config.text_column, "chosen")
        if not (config.rejected_text_column == "rejected" and config.rejected_text_column in train_data.column_names):
            train_data = train_data.rename_column(config.rejected_text_column, "rejected")
    if config.trainer in ("dpo", "orpo"):
        if not (config.prompt_text_column == "prompt" and config.prompt_text_column in train_data.column_names):
            train_data = train_data.rename_column(config.prompt_text_column, "prompt")

    if config.valid_split is not None:
        if config.data_path == f"{config.project_name}/autotrain-data":
            valid_data = load_from_disk(config.data_path)[config.valid_split]
        else:
            if ":" in config.valid_split:
                dataset_config_name, split = config.valid_split.split(":")
                valid_data = load_dataset(
                    config.data_path,
                    name=dataset_config_name,
                    split=split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
            else:
                valid_data = load_dataset(
                    config.data_path,
                    split=config.valid_split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )

        if config.trainer in ("dpo", "reward", "orpo"):
            if not (config.text_column == "chosen" and config.text_column in valid_data.column_names):
                valid_data = valid_data.rename_column(config.text_column, "chosen")
            if not (
                config.rejected_text_column == "rejected" and config.rejected_text_column in valid_data.column_names
            ):
                valid_data = valid_data.rename_column(config.rejected_text_column, "rejected")
        if config.trainer in ("dpo", "reward"):
            if not (config.prompt_text_column == "prompt" and config.prompt_text_column in valid_data.column_names):
                valid_data = valid_data.rename_column(config.prompt_text_column, "prompt")
    else:
        valid_data = None

    logger.info(f"Train data: {train_data}")
    logger.info(f"Valid data: {valid_data}")

    return train_data, valid_data


def get_tokenizer(config):
    """
    Initializes and returns a tokenizer based on the provided configuration.

    Args:
        config (object): Configuration object containing the following attributes:
            - chat_template (str): The chat template type, either "chatml" or "zephyr".
            - model (str): The model identifier to load the tokenizer from.
            - token (str): The token to use for the tokenizer.
            - model_max_length (int): The maximum length of the model.
            - padding (str): The padding side, either "left" or "right".

    Returns:
        tokenizer (PreTrainedTokenizer): The initialized tokenizer with the specified configuration.
    """
    special_tokens = None
    chat_template = None
    if config.chat_template == "chatml":
        special_tokens = ChatmlSpecialTokens
        chat_template = CHATML_CHAT_TEMPLATE
    elif config.chat_template == "zephyr":
        special_tokens = ZephyrSpecialTokens
        chat_template = ZEPHYR_CHAT_TEMPLATE

    if special_tokens is not None:
        tokenizer = AutoTokenizer.from_pretrained(
            config.model,
            pad_token=special_tokens.PAD_TOKEN.value,
            bos_token=special_tokens.BOS_TOKEN.value,
            eos_token=special_tokens.EOS_TOKEN.value,
            additional_special_tokens=special_tokens.list(),
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
        )
        tokenizer.chat_template = chat_template
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            config.model, token=config.token, trust_remote_code=ALLOW_REMOTE_CODE
        )
        if tokenizer.chat_template is None:
            tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE

    if tokenizer.model_max_length > 2048:
        tokenizer.model_max_length = config.model_max_length

    if getattr(tokenizer, "pad_token", None) is None:
        tokenizer.pad_token = tokenizer.eos_token

    if getattr(tokenizer, "pad_token_id", None) is None:
        tokenizer.pad_token_id = tokenizer.eos_token_id

    if config.padding in ("left", "right"):
        tokenizer.padding_side = config.padding

    return tokenizer


def process_data_with_chat_template(config, tokenizer, train_data, valid_data):
    """
    Processes training and validation data using a specified chat template.

    Args:
        config (object): Configuration object containing settings and parameters.
        tokenizer (object): Tokenizer object used for tokenizing the data.
        train_data (Dataset): Training dataset to be processed.
        valid_data (Dataset): Validation dataset to be processed.

    Returns:
        tuple: A tuple containing the processed training and validation datasets.

    Notes:
        - If `config.chat_template` is one of ("chatml", "zephyr", "tokenizer"), the chat template will be applied.
        - Logs information about the application of the chat template.
        - For ORPO/DPO, the `prompt` will be extracted from chosen messages.
        - If `config.valid_split` is not None, the validation data will also be processed.
    """
    valid_data = None
    if config.chat_template in ("chatml", "zephyr", "tokenizer"):
        logger.info("Applying chat template")
        logger.info("For ORPO/DPO, `prompt` will be extracted from chosen messages")
        train_data = train_data.map(
            apply_chat_template,
            fn_kwargs={
                "tokenizer": tokenizer,
                "config": config,
            },
        )
        if config.valid_split is not None:
            valid_data = valid_data.map(
                apply_chat_template,
                fn_kwargs={
                    "tokenizer": tokenizer,
                    "config": config,
                },
            )
    return train_data, valid_data


def configure_logging_steps(config, train_data, valid_data):
    """
    Configures the logging steps for training based on the provided configuration and data.

    Parameters:
    config (object): Configuration object containing training parameters, including `logging_steps`, `valid_split`, and `batch_size`.
    train_data (iterable): Training dataset.
    valid_data (iterable): Validation dataset.

    Returns:
    int: The number of logging steps to be used during training.

    Notes:
    - If `config.logging_steps` is set to -1, the function calculates logging steps based on 20% of the length of the validation data (if `valid_split` is provided) or the training data.
    - The calculated logging steps are constrained to be between 1 and 25.
    - If `config.logging_steps` is not -1, the function uses the provided value.
    """
    logger.info("configuring logging steps")
    if config.logging_steps == -1:
        if config.valid_split is not None:
            logging_steps = int(0.2 * len(valid_data) / config.batch_size)
        else:
            logging_steps = int(0.2 * len(train_data) / config.batch_size)
        if logging_steps == 0:
            logging_steps = 1
        if logging_steps > 25:
            logging_steps = 25
        config.logging_steps = logging_steps
    else:
        logging_steps = config.logging_steps
    logger.info(f"Logging steps: {logging_steps}")
    return logging_steps


def configure_training_args(config, logging_steps):
    """
    Configures the training arguments for a language model based on the provided configuration.

    Args:
        config (object): Configuration object containing various training parameters.
        logging_steps (int): Number of steps between logging events.

    Returns:
        dict: A dictionary containing the configured training arguments.

    The configuration object `config` should have the following attributes:
        - project_name (str): The name of the project, used as the output directory.
        - batch_size (int): Batch size for both training and evaluation.
        - lr (float): Learning rate.
        - epochs (int): Number of training epochs.
        - eval_strategy (str): Evaluation strategy, e.g., "steps" or "epoch".
        - valid_split (float or None): Validation split ratio. If None, evaluation is disabled.
        - save_total_limit (int): Maximum number of checkpoints to save.
        - gradient_accumulation (int): Number of gradient accumulation steps.
        - log (str): Logging destination, e.g., "tensorboard".
        - auto_find_batch_size (bool): Whether to automatically find the optimal batch size.
        - scheduler (str): Learning rate scheduler type.
        - optimizer (str): Optimizer type.
        - warmup_ratio (float): Warmup ratio for learning rate scheduling.
        - weight_decay (float): Weight decay for the optimizer.
        - max_grad_norm (float): Maximum gradient norm for clipping.
        - disable_gradient_checkpointing (bool): Whether to disable gradient checkpointing.
        - peft (bool): Whether to use Parameter-Efficient Fine-Tuning (PEFT).
        - quantization (str): Quantization type, e.g., "int4" or "int8".
        - mixed_precision (str): Mixed precision type, e.g., "fp16" or "bf16".

    The function also sets additional training arguments based on the provided configuration,
    such as enabling gradient checkpointing and mixed precision training.
    """
    logger.info("configuring training args")
    training_args = dict(
        output_dir=config.project_name,
        per_device_train_batch_size=config.batch_size,
        per_device_eval_batch_size=config.batch_size,
        learning_rate=config.lr,
        num_train_epochs=config.epochs,
        eval_strategy=config.eval_strategy if config.valid_split is not None else "no",
        logging_steps=logging_steps,
        save_total_limit=config.save_total_limit,
        save_strategy=config.eval_strategy if config.valid_split is not None else "no",
        gradient_accumulation_steps=config.gradient_accumulation,
        report_to=config.log,
        auto_find_batch_size=config.auto_find_batch_size,
        lr_scheduler_type=config.scheduler,
        optim=config.optimizer,
        warmup_ratio=config.warmup_ratio,
        weight_decay=config.weight_decay,
        max_grad_norm=config.max_grad_norm,
        push_to_hub=False,
        load_best_model_at_end=True if config.valid_split is not None else False,
        ddp_find_unused_parameters=False,
        gradient_checkpointing=not config.disable_gradient_checkpointing,
        remove_unused_columns=False,
    )

    if not config.disable_gradient_checkpointing:
        if config.peft and config.quantization in ("int4", "int8"):
            training_args["gradient_checkpointing_kwargs"] = {"use_reentrant": True}
        else:
            training_args["gradient_checkpointing_kwargs"] = {"use_reentrant": False}

    if config.mixed_precision == "fp16":
        training_args["fp16"] = True
    if config.mixed_precision == "bf16":
        training_args["bf16"] = True

    return training_args


def configure_block_size(config, tokenizer):
    """
    Configures the block size for the given configuration and tokenizer.

    This function sets the `block_size` attribute in the `config` object based on the `tokenizer`'s maximum model length.
    If `config.block_size` is -1, it is set to None. If `config.block_size` is None, it defaults to the tokenizer's
    `model_max_length` but not exceeding 1024. If `config.block_size` is specified and exceeds the tokenizer's
    `model_max_length`, a warning is logged and the block size is set to the tokenizer's `model_max_length`.

    Args:
        config (object): Configuration object that contains the `block_size` attribute.
        tokenizer (object): Tokenizer object that contains the `model_max_length` attribute.

    Returns:
        object: The updated configuration object with the `block_size` attribute set.
    """
    if config.block_size == -1:
        config.block_size = None

    if config.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warning(
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
            )
            block_size = 1024
    else:
        if config.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({config.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(config.block_size, tokenizer.model_max_length)

    config.block_size = block_size

    logger.info(f"Using block size {block_size}")
    return config


def get_callbacks(config):
    """
    Generate a list of callback instances based on the provided configuration.

    This function creates a list of callback instances that are used during the training process.
    It includes default callbacks for logging and training start, and conditionally adds callbacks
    for saving and loading PEFT models based on the configuration and environment settings.

    Args:
        config (object): Configuration object containing training settings and parameters.

    Returns:
        list: A list of callback instances to be used during training.
    """
    is_deepspeed_enabled = os.environ.get("ACCELERATE_USE_DEEPSPEED", "False").lower() == "true"
    callbacks = [UploadLogs(config=config), LossLoggingCallback(), TrainStartCallback()]
    if config.peft and not is_deepspeed_enabled:
        callbacks.append(SavePeftModelCallback)
        if config.valid_split is not None:
            callbacks.append(LoadBestPeftModelCallback)
    return callbacks


def get_model(config, tokenizer):
    """
    Loads and configures a language model based on the provided configuration and tokenizer.

    Args:
        config (Namespace): Configuration object containing model parameters and settings.
            - model (str): The model name or path.
            - token (str): Token for accessing the model.
            - unsloth (bool): Flag to determine if unsloth is used.
            - trainer (str): Type of trainer to use.
            - target_modules (str): Target modules for unsloth.
            - peft (bool): Flag to determine if PEFT (Parameter-Efficient Fine-Tuning) is used.
            - quantization (str): Quantization type, either "int4" or "int8".
            - mixed_precision (str): Mixed precision type, either "fp16" or "bf16".
            - block_size (int): Maximum sequence length.
            - lora_r (int): LoRA rank.
            - lora_alpha (int): LoRA alpha.
            - lora_dropout (float): LoRA dropout rate.
            - seed (int): Random seed.
            - disable_gradient_checkpointing (bool): Flag to disable gradient checkpointing.
            - use_flash_attention_2 (bool): Flag to use flash attention 2.
        tokenizer (PreTrainedTokenizer): Tokenizer to use with the model.

    Returns:
        PreTrainedModel: The configured language model.

    Raises:
        ImportError: If unsloth is not available when required.
    """
    model_config = AutoConfig.from_pretrained(
        config.model,
        token=config.token,
        trust_remote_code=ALLOW_REMOTE_CODE,
    )
    model_type = model_config.model_type
    unsloth_target_modules = None
    can_use_unloth = False

    if config.unsloth and is_unsloth_available() and config.trainer in ("default", "sft"):
        can_use_unloth = True

    if model_type in ("llama", "mistral", "gemma", "qwen2") and config.unsloth:
        if config.target_modules.strip().lower() == "all-linear":
            unsloth_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
        else:
            unsloth_target_modules = get_target_modules(config)
    else:
        can_use_unloth = False

    logger.info(f"Can use unsloth: {can_use_unloth}")
    if can_use_unloth:
        from unsloth import FastLanguageModel

        load_in_4bit = False
        load_in_8bit = False
        if config.peft and config.quantization == "int4":
            load_in_4bit = True
        elif config.peft and config.quantization == "int8":
            load_in_8bit = True

        dtype = None
        if config.mixed_precision == "fp16":
            dtype = torch.float16
        elif config.mixed_precision == "bf16":
            dtype = torch.bfloat16

        model, _ = FastLanguageModel.from_pretrained(
            model_name=config.model,
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
            load_in_4bit=load_in_4bit,
            load_in_8bit=load_in_8bit,
            max_seq_length=config.block_size,
            dtype=dtype,
        )
        if config.peft:
            model = FastLanguageModel.get_peft_model(
                model,
                r=config.lora_r,
                target_modules=unsloth_target_modules,
                lora_alpha=config.lora_alpha,
                lora_dropout=config.lora_dropout,
                bias="none",
                use_gradient_checkpointing="unsloth",
                random_state=config.seed,
                max_seq_length=config.block_size,
                use_rslora=False,
                loftq_config=None,
            )
        return model
    else:
        logger.warning("Unsloth not available, continuing without it...")

    logger.info("loading model config...")
    model_config = AutoConfig.from_pretrained(
        config.model,
        token=config.token,
        trust_remote_code=ALLOW_REMOTE_CODE,
        use_cache=config.disable_gradient_checkpointing,
    )

    logger.info("loading model...")
    if config.peft:
        if config.quantization == "int4":
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=False,
            )
        elif config.quantization == "int8":
            bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        else:
            bnb_config = None

        model = AutoModelForCausalLM.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            quantization_config=bnb_config,
            trust_remote_code=ALLOW_REMOTE_CODE,
            use_flash_attention_2=config.use_flash_attention_2,
        )
    else:
        model = AutoModelForCausalLM.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
            use_flash_attention_2=config.use_flash_attention_2,
        )

    logger.info(f"model dtype: {model.dtype}")
    model.resize_token_embeddings(len(tokenizer))

    if config.trainer != "default":
        return model

    if config.peft:
        logger.info("preparing peft model...")
        if config.quantization is not None:
            gradient_checkpointing_kwargs = {}
            if not config.disable_gradient_checkpointing:
                if config.quantization in ("int4", "int8"):
                    gradient_checkpointing_kwargs = {"use_reentrant": True}
                else:
                    gradient_checkpointing_kwargs = {"use_reentrant": False}
            model = prepare_model_for_kbit_training(
                model,
                use_gradient_checkpointing=not config.disable_gradient_checkpointing,
                gradient_checkpointing_kwargs=gradient_checkpointing_kwargs,
            )
        else:
            model.enable_input_require_grads()

        peft_config = LoraConfig(
            r=config.lora_r,
            lora_alpha=config.lora_alpha,
            lora_dropout=config.lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
            target_modules=get_target_modules(config),
        )
        model = get_peft_model(model, peft_config)

    return model