File size: 5,579 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from functools import partial

from autotrain import logger


def _prepare_dataset(examples, tokenizer, config):
    # taken from:
    # https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py
    # and modified for AutoTrain
    pad_on_right = tokenizer.padding_side == "right"
    tokenized_examples = tokenizer(
        examples[config.question_column if pad_on_right else config.text_column],
        examples[config.text_column if pad_on_right else config.question_column],
        truncation="only_second" if pad_on_right else "only_first",
        max_length=config.max_seq_length,
        stride=config.max_doc_stride,
        return_overflowing_tokens=True,
        return_offsets_mapping=True,
        padding="max_length",
    )

    # Since one example might give us several features if it has a long context, we need a map from a feature to
    # its corresponding example. This key gives us just that.
    sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
    # The offset mappings will give us a map from token to character position in the original context. This will
    # help us compute the start_positions and end_positions.
    offset_mapping = tokenized_examples.pop("offset_mapping")

    # Let's label those examples!
    tokenized_examples["start_positions"] = []
    tokenized_examples["end_positions"] = []

    for i, offsets in enumerate(offset_mapping):
        # We will label impossible answers with the index of the CLS token.
        input_ids = tokenized_examples["input_ids"][i]
        if tokenizer.cls_token_id in input_ids:
            cls_index = input_ids.index(tokenizer.cls_token_id)
        elif tokenizer.bos_token_id in input_ids:
            cls_index = input_ids.index(tokenizer.bos_token_id)
        else:
            cls_index = 0

        # Grab the sequence corresponding to that example (to know what is the context and what is the question).
        sequence_ids = tokenized_examples.sequence_ids(i)

        # One example can give several spans, this is the index of the example containing this span of text.
        sample_index = sample_mapping[i]
        answers = examples[config.answer_column][sample_index]
        # If no answers are given, set the cls_index as answer.
        if len(answers["answer_start"]) == 0:
            tokenized_examples["start_positions"].append(cls_index)
            tokenized_examples["end_positions"].append(cls_index)
        else:
            # Start/end character index of the answer in the text.
            start_char = answers["answer_start"][0]
            end_char = start_char + len(answers["text"][0])

            # Start token index of the current span in the text.
            token_start_index = 0
            while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                token_start_index += 1

            # End token index of the current span in the text.
            token_end_index = len(input_ids) - 1
            while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                token_end_index -= 1

            # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
            if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                # Note: we could go after the last offset if the answer is the last word (edge case).
                while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                    token_start_index += 1
                tokenized_examples["start_positions"].append(token_start_index - 1)
                while offsets[token_end_index][1] >= end_char:
                    token_end_index -= 1
                tokenized_examples["end_positions"].append(token_end_index + 1)

    return tokenized_examples


class ExtractiveQuestionAnsweringDataset:
    """
    A dataset class for extractive question answering tasks.

    Args:
        data (Dataset): The dataset to be processed.
        tokenizer (PreTrainedTokenizer): The tokenizer to be used for processing the data.
        config (dict): Configuration parameters for processing the dataset.

    Attributes:
        data (Dataset): The original dataset.
        tokenizer (PreTrainedTokenizer): The tokenizer used for processing the data.
        config (dict): Configuration parameters for processing the dataset.
        tokenized_data (Dataset): The tokenized dataset after applying the mapping function.

    Methods:
        __len__(): Returns the length of the tokenized dataset.
        __getitem__(item): Returns the tokenized data at the specified index.
    """

    def __init__(self, data, tokenizer, config):
        self.data = data
        self.tokenizer = tokenizer
        self.config = config
        logger.info("Processing data for Extractive QA")
        mapping_function = partial(_prepare_dataset, tokenizer=self.tokenizer, config=self.config)
        self.tokenized_data = self.data.map(
            mapping_function,
            batched=True,
            remove_columns=self.data.column_names,
        )

    def __len__(self):
        return len(self.tokenized_data)

    def __getitem__(self, item):
        return self.tokenized_data[item]