File size: 10,148 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
from dataclasses import dataclass

import albumentations as A
import torch
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from transformers.image_transforms import center_to_corners_format

from autotrain.trainers.object_detection.dataset import ObjectDetectionDataset


VALID_METRICS = (
    "eval_loss",
    "eval_map",
    "eval_map_50",
    "eval_map_75",
    "eval_map_small",
    "eval_map_medium",
    "eval_map_large",
    "eval_mar_1",
    "eval_mar_10",
    "eval_mar_100",
    "eval_mar_small",
    "eval_mar_medium",
    "eval_mar_large",
)

MODEL_CARD = """
---
library_name: transformers
tags:
- autotrain
- object-detection
- vision{base_model}
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
  example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
  example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
  example_title: Palace{dataset_tag}
---

# Model Trained Using AutoTrain

- Problem type: Object Detection

## Validation Metrics
{validation_metrics}
"""


def collate_fn(batch):
    """
    Collates a batch of data for object detection training.

    Args:
        batch (list): A list of dictionaries, where each dictionary contains
                      'pixel_values', 'labels', and optionally 'pixel_mask'.

    Returns:
        dict: A dictionary with the following keys:
            - 'pixel_values' (torch.Tensor): A tensor containing stacked pixel values from the batch.
            - 'labels' (list): A list of labels from the batch.
            - 'pixel_mask' (torch.Tensor, optional): A tensor containing stacked pixel masks from the batch,
                                                     if 'pixel_mask' is present in the input batch.
    """
    data = {}
    data["pixel_values"] = torch.stack([x["pixel_values"] for x in batch])
    data["labels"] = [x["labels"] for x in batch]
    if "pixel_mask" in batch[0]:
        data["pixel_mask"] = torch.stack([x["pixel_mask"] for x in batch])
    return data


def process_data(train_data, valid_data, image_processor, config):
    """
    Processes training and validation data for object detection.

    Args:
        train_data (list): List of training data samples.
        valid_data (list or None): List of validation data samples. If None, only training data is processed.
        image_processor (object): An image processor object that contains image processing configurations.
        config (dict): Configuration dictionary containing various settings for data processing.

    Returns:
        tuple: A tuple containing processed training data and validation data (if provided). If validation data is not provided, the second element of the tuple is None.
    """
    max_size = image_processor.size["longest_edge"]
    basic_transforms = [
        A.LongestMaxSize(max_size=max_size),
        A.PadIfNeeded(max_size, max_size, border_mode=0, value=(128, 128, 128), position="top_left"),
    ]
    train_transforms = A.Compose(
        [
            A.Compose(
                [
                    A.SmallestMaxSize(max_size=max_size, p=1.0),
                    A.RandomSizedBBoxSafeCrop(height=max_size, width=max_size, p=1.0),
                ],
                p=0.2,
            ),
            A.OneOf(
                [
                    A.Blur(blur_limit=7, p=0.5),
                    A.MotionBlur(blur_limit=7, p=0.5),
                    A.Defocus(radius=(1, 5), alias_blur=(0.1, 0.25), p=0.1),
                ],
                p=0.1,
            ),
            A.Perspective(p=0.1),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(p=0.5),
            A.HueSaturationValue(p=0.1),
            *basic_transforms,
        ],
        bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True, min_area=25),
    )
    val_transforms = A.Compose(
        basic_transforms,
        bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True),
    )

    train_data = ObjectDetectionDataset(train_data, train_transforms, image_processor, config)
    if valid_data is not None:
        valid_data = ObjectDetectionDataset(valid_data, val_transforms, image_processor, config)
        return train_data, valid_data
    return train_data, None


def convert_bbox_yolo_to_pascal(boxes, image_size):
    """
    Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1]
    to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates.

    Args:
        boxes (torch.Tensor): Bounding boxes in YOLO format
        image_size (Tuple[int, int]): Image size in format (height, width)

    Returns:
        torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)
    """
    # convert center to corners format
    boxes = center_to_corners_format(boxes)

    # convert to absolute coordinates
    height, width = image_size
    boxes = boxes * torch.tensor([[width, height, width, height]])

    return boxes


@torch.no_grad()
def object_detection_metrics(evaluation_results, image_processor, threshold=0.0, id2label=None):
    """
    Compute mean average mAP, mAR and their variants for the object detection task.

    Args:
        evaluation_results (EvalPrediction): Predictions and targets from evaluation.
        threshold (float, optional): Threshold to filter predicted boxes by confidence. Defaults to 0.0.
        id2label (Optional[dict], optional): Mapping from class id to class name. Defaults to None.

    Returns:
        Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>}
    """

    @dataclass
    class ModelOutput:
        logits: torch.Tensor
        pred_boxes: torch.Tensor

    predictions, targets = evaluation_results.predictions, evaluation_results.label_ids

    # For metric computation we need to provide:
    #  - targets in a form of list of dictionaries with keys "boxes", "labels"
    #  - predictions in a form of list of dictionaries with keys "boxes", "scores", "labels"

    image_sizes = []
    post_processed_targets = []
    post_processed_predictions = []

    # Collect targets in the required format for metric computation
    for batch in targets:
        # collect image sizes, we will need them for predictions post processing
        batch_image_sizes = torch.tensor([x["orig_size"] for x in batch])
        image_sizes.append(batch_image_sizes)
        # collect targets in the required format for metric computation
        # boxes were converted to YOLO format needed for model training
        # here we will convert them to Pascal VOC format (x_min, y_min, x_max, y_max)
        for image_target in batch:
            boxes = torch.tensor(image_target["boxes"])
            boxes = convert_bbox_yolo_to_pascal(boxes, image_target["orig_size"])
            labels = torch.tensor(image_target["class_labels"])
            post_processed_targets.append({"boxes": boxes, "labels": labels})

    # Collect predictions in the required format for metric computation,
    # model produce boxes in YOLO format, then image_processor convert them to Pascal VOC format
    for batch, target_sizes in zip(predictions, image_sizes):
        batch_logits, batch_boxes = batch[1], batch[2]
        output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))
        post_processed_output = image_processor.post_process_object_detection(
            output, threshold=threshold, target_sizes=target_sizes
        )
        post_processed_predictions.extend(post_processed_output)

    # Compute metrics
    metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
    metric.update(post_processed_predictions, post_processed_targets)
    metrics = metric.compute()

    # Replace list of per class metrics with separate metric for each class
    classes = metrics.pop("classes")
    try:
        len(classes)
        calc_map_per_class = True
    except TypeError:
        calc_map_per_class = False

    if calc_map_per_class:
        map_per_class = metrics.pop("map_per_class")
        mar_100_per_class = metrics.pop("mar_100_per_class")
        for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
            class_name = id2label[class_id.item()] if id2label is not None else class_id.item()
            metrics[f"map_{class_name}"] = class_map
            metrics[f"mar_100_{class_name}"] = class_mar

    metrics = {k: round(v.item(), 4) for k, v in metrics.items()}

    return metrics


def create_model_card(config, trainer):
    """
    Generates a model card string based on the provided configuration and trainer.

    Args:
        config (object): Configuration object containing the following attributes:
            - valid_split (optional): Validation split information.
            - data_path (str): Path to the dataset.
            - project_name (str): Name of the project.
            - model (str): Path or identifier of the model.
        trainer (object): Trainer object with an `evaluate` method that returns evaluation metrics.

    Returns:
        str: A formatted model card string containing dataset information, validation metrics, and base model details.
    """
    if config.valid_split is not None:
        eval_scores = trainer.evaluate()
        eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in VALID_METRICS]
        eval_scores = "\n\n".join(eval_scores)

    else:
        eval_scores = "No validation metrics available"

    if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
        dataset_tag = ""
    else:
        dataset_tag = f"\ndatasets:\n- {config.data_path}"

    if os.path.isdir(config.model):
        base_model = ""
    else:
        base_model = f"\nbase_model: {config.model}"

    model_card = MODEL_CARD.format(
        dataset_tag=dataset_tag,
        validation_metrics=eval_scores,
        base_model=base_model,
    )
    return model_card