Spaces:
Sleeping
Sleeping
File size: 10,148 Bytes
33d4721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
from dataclasses import dataclass
import albumentations as A
import torch
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from transformers.image_transforms import center_to_corners_format
from autotrain.trainers.object_detection.dataset import ObjectDetectionDataset
VALID_METRICS = (
"eval_loss",
"eval_map",
"eval_map_50",
"eval_map_75",
"eval_map_small",
"eval_map_medium",
"eval_map_large",
"eval_mar_1",
"eval_mar_10",
"eval_mar_100",
"eval_mar_small",
"eval_mar_medium",
"eval_mar_large",
)
MODEL_CARD = """
---
library_name: transformers
tags:
- autotrain
- object-detection
- vision{base_model}
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace{dataset_tag}
---
# Model Trained Using AutoTrain
- Problem type: Object Detection
## Validation Metrics
{validation_metrics}
"""
def collate_fn(batch):
"""
Collates a batch of data for object detection training.
Args:
batch (list): A list of dictionaries, where each dictionary contains
'pixel_values', 'labels', and optionally 'pixel_mask'.
Returns:
dict: A dictionary with the following keys:
- 'pixel_values' (torch.Tensor): A tensor containing stacked pixel values from the batch.
- 'labels' (list): A list of labels from the batch.
- 'pixel_mask' (torch.Tensor, optional): A tensor containing stacked pixel masks from the batch,
if 'pixel_mask' is present in the input batch.
"""
data = {}
data["pixel_values"] = torch.stack([x["pixel_values"] for x in batch])
data["labels"] = [x["labels"] for x in batch]
if "pixel_mask" in batch[0]:
data["pixel_mask"] = torch.stack([x["pixel_mask"] for x in batch])
return data
def process_data(train_data, valid_data, image_processor, config):
"""
Processes training and validation data for object detection.
Args:
train_data (list): List of training data samples.
valid_data (list or None): List of validation data samples. If None, only training data is processed.
image_processor (object): An image processor object that contains image processing configurations.
config (dict): Configuration dictionary containing various settings for data processing.
Returns:
tuple: A tuple containing processed training data and validation data (if provided). If validation data is not provided, the second element of the tuple is None.
"""
max_size = image_processor.size["longest_edge"]
basic_transforms = [
A.LongestMaxSize(max_size=max_size),
A.PadIfNeeded(max_size, max_size, border_mode=0, value=(128, 128, 128), position="top_left"),
]
train_transforms = A.Compose(
[
A.Compose(
[
A.SmallestMaxSize(max_size=max_size, p=1.0),
A.RandomSizedBBoxSafeCrop(height=max_size, width=max_size, p=1.0),
],
p=0.2,
),
A.OneOf(
[
A.Blur(blur_limit=7, p=0.5),
A.MotionBlur(blur_limit=7, p=0.5),
A.Defocus(radius=(1, 5), alias_blur=(0.1, 0.25), p=0.1),
],
p=0.1,
),
A.Perspective(p=0.1),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
A.HueSaturationValue(p=0.1),
*basic_transforms,
],
bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True, min_area=25),
)
val_transforms = A.Compose(
basic_transforms,
bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True),
)
train_data = ObjectDetectionDataset(train_data, train_transforms, image_processor, config)
if valid_data is not None:
valid_data = ObjectDetectionDataset(valid_data, val_transforms, image_processor, config)
return train_data, valid_data
return train_data, None
def convert_bbox_yolo_to_pascal(boxes, image_size):
"""
Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1]
to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates.
Args:
boxes (torch.Tensor): Bounding boxes in YOLO format
image_size (Tuple[int, int]): Image size in format (height, width)
Returns:
torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)
"""
# convert center to corners format
boxes = center_to_corners_format(boxes)
# convert to absolute coordinates
height, width = image_size
boxes = boxes * torch.tensor([[width, height, width, height]])
return boxes
@torch.no_grad()
def object_detection_metrics(evaluation_results, image_processor, threshold=0.0, id2label=None):
"""
Compute mean average mAP, mAR and their variants for the object detection task.
Args:
evaluation_results (EvalPrediction): Predictions and targets from evaluation.
threshold (float, optional): Threshold to filter predicted boxes by confidence. Defaults to 0.0.
id2label (Optional[dict], optional): Mapping from class id to class name. Defaults to None.
Returns:
Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>}
"""
@dataclass
class ModelOutput:
logits: torch.Tensor
pred_boxes: torch.Tensor
predictions, targets = evaluation_results.predictions, evaluation_results.label_ids
# For metric computation we need to provide:
# - targets in a form of list of dictionaries with keys "boxes", "labels"
# - predictions in a form of list of dictionaries with keys "boxes", "scores", "labels"
image_sizes = []
post_processed_targets = []
post_processed_predictions = []
# Collect targets in the required format for metric computation
for batch in targets:
# collect image sizes, we will need them for predictions post processing
batch_image_sizes = torch.tensor([x["orig_size"] for x in batch])
image_sizes.append(batch_image_sizes)
# collect targets in the required format for metric computation
# boxes were converted to YOLO format needed for model training
# here we will convert them to Pascal VOC format (x_min, y_min, x_max, y_max)
for image_target in batch:
boxes = torch.tensor(image_target["boxes"])
boxes = convert_bbox_yolo_to_pascal(boxes, image_target["orig_size"])
labels = torch.tensor(image_target["class_labels"])
post_processed_targets.append({"boxes": boxes, "labels": labels})
# Collect predictions in the required format for metric computation,
# model produce boxes in YOLO format, then image_processor convert them to Pascal VOC format
for batch, target_sizes in zip(predictions, image_sizes):
batch_logits, batch_boxes = batch[1], batch[2]
output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))
post_processed_output = image_processor.post_process_object_detection(
output, threshold=threshold, target_sizes=target_sizes
)
post_processed_predictions.extend(post_processed_output)
# Compute metrics
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
metric.update(post_processed_predictions, post_processed_targets)
metrics = metric.compute()
# Replace list of per class metrics with separate metric for each class
classes = metrics.pop("classes")
try:
len(classes)
calc_map_per_class = True
except TypeError:
calc_map_per_class = False
if calc_map_per_class:
map_per_class = metrics.pop("map_per_class")
mar_100_per_class = metrics.pop("mar_100_per_class")
for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
class_name = id2label[class_id.item()] if id2label is not None else class_id.item()
metrics[f"map_{class_name}"] = class_map
metrics[f"mar_100_{class_name}"] = class_mar
metrics = {k: round(v.item(), 4) for k, v in metrics.items()}
return metrics
def create_model_card(config, trainer):
"""
Generates a model card string based on the provided configuration and trainer.
Args:
config (object): Configuration object containing the following attributes:
- valid_split (optional): Validation split information.
- data_path (str): Path to the dataset.
- project_name (str): Name of the project.
- model (str): Path or identifier of the model.
trainer (object): Trainer object with an `evaluate` method that returns evaluation metrics.
Returns:
str: A formatted model card string containing dataset information, validation metrics, and base model details.
"""
if config.valid_split is not None:
eval_scores = trainer.evaluate()
eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in VALID_METRICS]
eval_scores = "\n\n".join(eval_scores)
else:
eval_scores = "No validation metrics available"
if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
dataset_tag = ""
else:
dataset_tag = f"\ndatasets:\n- {config.data_path}"
if os.path.isdir(config.model):
base_model = ""
else:
base_model = f"\nbase_model: {config.model}"
model_card = MODEL_CARD.format(
dataset_tag=dataset_tag,
validation_metrics=eval_scores,
base_model=base_model,
)
return model_card
|