File size: 9,864 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import json
from functools import partial

import torch
from accelerate.state import PartialState
from datasets import load_dataset, load_from_disk
from huggingface_hub import HfApi
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    DataCollatorForSeq2Seq,
    EarlyStoppingCallback,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
)
from transformers.trainer_callback import PrinterCallback

from autotrain import logger
from autotrain.trainers.common import (
    ALLOW_REMOTE_CODE,
    LossLoggingCallback,
    TrainStartCallback,
    UploadLogs,
    monitor,
    pause_space,
    remove_autotrain_data,
    save_training_params,
)
from autotrain.trainers.seq2seq import utils
from autotrain.trainers.seq2seq.dataset import Seq2SeqDataset
from autotrain.trainers.seq2seq.params import Seq2SeqParams


def parse_args():
    # get training_config.json from the end user
    parser = argparse.ArgumentParser()
    parser.add_argument("--training_config", type=str, required=True)
    return parser.parse_args()


@monitor
def train(config):
    if isinstance(config, dict):
        config = Seq2SeqParams(**config)

    train_data = None
    valid_data = None
    # check if config.train_split.csv exists in config.data_path
    if config.train_split is not None:
        if config.data_path == f"{config.project_name}/autotrain-data":
            logger.info("loading dataset from disk")
            train_data = load_from_disk(config.data_path)[config.train_split]
        else:
            if ":" in config.train_split:
                dataset_config_name, split = config.train_split.split(":")
                train_data = load_dataset(
                    config.data_path,
                    name=dataset_config_name,
                    split=split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
            else:
                train_data = load_dataset(
                    config.data_path,
                    split=config.train_split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )

    if config.valid_split is not None:
        if config.data_path == f"{config.project_name}/autotrain-data":
            logger.info("loading dataset from disk")
            valid_data = load_from_disk(config.data_path)[config.valid_split]
        else:
            if ":" in config.valid_split:
                dataset_config_name, split = config.valid_split.split(":")
                valid_data = load_dataset(
                    config.data_path,
                    name=dataset_config_name,
                    split=split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
            else:
                valid_data = load_dataset(
                    config.data_path,
                    split=config.valid_split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )

    tokenizer = AutoTokenizer.from_pretrained(config.model, token=config.token, trust_remote_code=ALLOW_REMOTE_CODE)

    train_data = Seq2SeqDataset(data=train_data, tokenizer=tokenizer, config=config)
    if config.valid_split is not None:
        valid_data = Seq2SeqDataset(data=valid_data, tokenizer=tokenizer, config=config)

    if config.logging_steps == -1:
        if config.valid_split is not None:
            logging_steps = int(0.2 * len(valid_data) / config.batch_size)
        else:
            logging_steps = int(0.2 * len(train_data) / config.batch_size)
        if logging_steps == 0:
            logging_steps = 1
        if logging_steps > 25:
            logging_steps = 25
        config.logging_steps = logging_steps
    else:
        logging_steps = config.logging_steps

    logger.info(f"Logging steps: {logging_steps}")

    training_args = dict(
        output_dir=config.project_name,
        per_device_train_batch_size=config.batch_size,
        per_device_eval_batch_size=2 * config.batch_size,
        learning_rate=config.lr,
        num_train_epochs=config.epochs,
        eval_strategy=config.eval_strategy if config.valid_split is not None else "no",
        logging_steps=logging_steps,
        save_total_limit=config.save_total_limit,
        save_strategy=config.eval_strategy if config.valid_split is not None else "no",
        gradient_accumulation_steps=config.gradient_accumulation,
        report_to=config.log,
        auto_find_batch_size=config.auto_find_batch_size,
        lr_scheduler_type=config.scheduler,
        optim=config.optimizer,
        warmup_ratio=config.warmup_ratio,
        weight_decay=config.weight_decay,
        max_grad_norm=config.max_grad_norm,
        push_to_hub=False,
        load_best_model_at_end=True if config.valid_split is not None else False,
        ddp_find_unused_parameters=False,
        predict_with_generate=True,
        seed=config.seed,
    )

    if config.mixed_precision == "fp16":
        training_args["fp16"] = True
    if config.mixed_precision == "bf16":
        training_args["bf16"] = True

    if config.valid_split is not None:
        early_stop = EarlyStoppingCallback(
            early_stopping_patience=config.early_stopping_patience,
            early_stopping_threshold=config.early_stopping_threshold,
        )
        callbacks_to_use = [early_stop]
    else:
        callbacks_to_use = []

    callbacks_to_use.extend([UploadLogs(config=config), LossLoggingCallback(), TrainStartCallback()])

    args = Seq2SeqTrainingArguments(**training_args)

    model_config = AutoConfig.from_pretrained(
        config.model,
        token=config.token,
        trust_remote_code=ALLOW_REMOTE_CODE,
        use_cache=False,
    )

    if config.peft:
        if config.quantization == "int4":
            raise NotImplementedError("int4 quantization is not supported")
        # if config.use_int4:
        #     bnb_config = BitsAndBytesConfig(
        #         load_in_4bit=config.use_int4,
        #         bnb_4bit_quant_type="nf4",
        #         bnb_4bit_compute_dtype=torch.float16,
        #         bnb_4bit_use_double_quant=False,
        #     )
        #     config.fp16 = True
        if config.quantization == "int8":
            bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        else:
            bnb_config = None

        model = AutoModelForSeq2SeqLM.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            quantization_config=bnb_config,
            trust_remote_code=ALLOW_REMOTE_CODE,
        )
    else:
        model = AutoModelForSeq2SeqLM.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
        )

    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))

    if config.peft:
        target_modules = config.target_modules.split(",") if config.target_modules is not None else None
        if target_modules:
            target_modules = [module.strip() for module in target_modules]
        if len(target_modules) == 1 and target_modules[0] == "all-linear":
            target_modules = "all-linear"
        lora_config = LoraConfig(
            r=config.lora_r,
            lora_alpha=config.lora_alpha,
            target_modules=target_modules,
            lora_dropout=config.lora_dropout,
            bias="none",
            task_type=TaskType.SEQ_2_SEQ_LM,
        )
        if config.quantization is not None:
            model = prepare_model_for_kbit_training(model)

        model = get_peft_model(model, lora_config)

    _s2s_metrics = partial(utils._seq2seq_metrics, tokenizer=tokenizer)

    trainer_args = dict(
        args=args,
        model=model,
        callbacks=callbacks_to_use,
        compute_metrics=_s2s_metrics,
    )
    data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
    trainer = Seq2SeqTrainer(
        **trainer_args,
        train_dataset=train_data,
        eval_dataset=valid_data,
        data_collator=data_collator,
        tokenizer=tokenizer,
    )

    for name, module in trainer.model.named_modules():
        if "norm" in name:
            module = module.to(torch.float32)

    trainer.remove_callback(PrinterCallback)
    trainer.train()

    logger.info("Finished training, saving model...")
    trainer.model.config.use_cache = True
    trainer.save_model(config.project_name)

    model_card = utils.create_model_card(config, trainer)

    # save model card to output directory as README.md
    with open(f"{config.project_name}/README.md", "w", encoding="utf-8") as f:
        f.write(model_card)

    if config.push_to_hub:
        if PartialState().process_index == 0:
            remove_autotrain_data(config)
            save_training_params(config)
            logger.info("Pushing model to hub...")
            api = HfApi(token=config.token)
            api.create_repo(
                repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True, exist_ok=True
            )
            api.upload_folder(
                folder_path=config.project_name,
                repo_id=f"{config.username}/{config.project_name}",
                repo_type="model",
            )

    if PartialState().process_index == 0:
        pause_space(config)


if __name__ == "__main__":
    _args = parse_args()
    training_config = json.load(open(_args.training_config))
    config = Seq2SeqParams(**training_config)
    train(config)