File size: 15,763 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import argparse
import json
import os
from functools import partial

import joblib
import numpy as np
import optuna
import pandas as pd
from datasets import load_dataset, load_from_disk
from huggingface_hub import HfApi
from sklearn import pipeline, preprocessing
from sklearn.compose import ColumnTransformer

from autotrain import logger
from autotrain.trainers.common import (
    ALLOW_REMOTE_CODE,
    monitor,
    pause_space,
    remove_autotrain_data,
    save_training_params,
)
from autotrain.trainers.tabular import utils
from autotrain.trainers.tabular.params import TabularParams


def parse_args():
    # get training_config.json from the end user
    parser = argparse.ArgumentParser()
    parser.add_argument("--training_config", type=str, required=True)
    return parser.parse_args()


def optimize(trial, model_name, xtrain, xvalid, ytrain, yvalid, eval_metric, task, preprocessor):
    """
    Optimize the model based on the given trial and parameters.

    Parameters:
    trial (dict or optuna.trial.Trial): The trial object or dictionary containing hyperparameters.
    model_name (str): The name of the model to be used (e.g., "xgboost").
    xtrain (pd.DataFrame or np.ndarray): Training features.
    xvalid (pd.DataFrame or np.ndarray): Validation features.
    ytrain (pd.Series or np.ndarray): Training labels.
    yvalid (pd.Series or np.ndarray): Validation labels.
    eval_metric (str): The evaluation metric to be used for optimization.
    task (str): The type of task (e.g., "binary_classification", "multi_class_classification", "single_column_regression").
    preprocessor (object): The preprocessor object to be applied to the data.

    Returns:
    float or tuple: If trial is a dictionary, returns a tuple containing the models, preprocessor, and metric dictionary.
                    Otherwise, returns the loss value based on the evaluation metric.
    """
    if isinstance(trial, dict):
        params = trial
    else:
        params = utils.get_params(trial, model_name, task)
    labels = None
    if task == "multi_class_classification":
        labels = np.unique(ytrain)
    metrics = utils.TabularMetrics(sub_task=task, labels=labels)

    if task in ("binary_classification", "multi_class_classification", "single_column_regression"):
        ytrain = ytrain.ravel()
        yvalid = yvalid.ravel()

    if preprocessor is not None:
        try:
            xtrain = preprocessor.fit_transform(xtrain)
            xvalid = preprocessor.transform(xvalid)
        except ValueError:
            logger.info("Preprocessing failed, using nan_to_num")
            train_cols = xtrain.columns.tolist()
            valid_cols = xvalid.columns.tolist()
            xtrain = np.nan_to_num(xtrain)
            xvalid = np.nan_to_num(xvalid)
            # convert back to dataframe
            xtrain = pd.DataFrame(xtrain, columns=train_cols)
            xvalid = pd.DataFrame(xvalid, columns=valid_cols)
            xtrain = preprocessor.fit_transform(xtrain)
            xvalid = preprocessor.transform(xvalid)

    if model_name == "xgboost":
        params["eval_metric"] = eval_metric

    _model = utils.TabularModel(model_name, preprocessor=None, sub_task=task, params=params)
    model = _model.pipeline
    models = []
    if task in ("multi_label_classification", "multi_column_regression"):
        # also multi_column_regression
        ypred = []
        models = [model] * ytrain.shape[1]
        for idx, _m in enumerate(models):
            if model_name == "xgboost":
                _m.fit(
                    xtrain,
                    ytrain[:, idx],
                    model__eval_set=[(xvalid, yvalid[:, idx])],
                    model__verbose=False,
                )
            else:
                _m.fit(xtrain, ytrain[:, idx])
            if task == "multi_column_regression":
                ypred_temp = _m.predict(xvalid)
            else:
                if _model.use_predict_proba:
                    ypred_temp = _m.predict_proba(xvalid)[:, 1]
                else:
                    ypred_temp = _m.predict(xvalid)
            ypred.append(ypred_temp)
        ypred = np.column_stack(ypred)

    else:
        models = [model]
        if model_name == "xgboost":
            model.fit(
                xtrain,
                ytrain,
                model__eval_set=[(xvalid, yvalid)],
                model__verbose=False,
            )
        else:
            models[0].fit(xtrain, ytrain)

        if _model.use_predict_proba:
            ypred = models[0].predict_proba(xvalid)
        else:
            ypred = models[0].predict(xvalid)

        if task == "multi_class_classification":
            if ypred.reshape(xvalid.shape[0], -1).shape[1] != len(labels):
                ypred_ohe = np.zeros((xvalid.shape[0], len(labels)))
                ypred_ohe[np.arange(xvalid.shape[0]), ypred] = 1
                ypred = ypred_ohe

        if task == "binary_classification":
            if ypred.reshape(xvalid.shape[0], -1).shape[1] != 2:
                ypred = np.column_stack([1 - ypred, ypred])

    # calculate metric
    metric_dict = metrics.calculate(yvalid, ypred)

    # change eval_metric key to loss
    if eval_metric in metric_dict:
        metric_dict["loss"] = metric_dict[eval_metric]

    logger.info(f"Metrics: {metric_dict}")
    if isinstance(trial, dict):
        return models, preprocessor, metric_dict
    return metric_dict["loss"]


@monitor
def train(config):
    """
    Train a tabular model based on the provided configuration.

    Args:
        config (dict or TabularParams): Configuration parameters for training. If a dictionary is provided, it will be converted to a TabularParams object.

    Raises:
        Exception: If `valid_data` is None, indicating that a valid split for tabular training was not provided.

    The function performs the following steps:
    1. Loads the training and validation datasets from disk or a specified data path.
    2. Identifies and processes categorical and numerical columns.
    3. Encodes target columns for classification tasks.
    4. Constructs preprocessing pipelines for numerical and categorical data.
    5. Determines the sub-task (e.g., binary classification, multi-class classification, regression).
    6. Optimizes the model using Optuna for hyperparameter tuning.
    7. Saves the best model and target encoders to disk.
    8. Creates and saves a model card.
    9. Optionally pushes the model to the Hugging Face Hub.

    Note:
        The function expects the configuration to contain various parameters such as `data_path`, `train_split`, `valid_split`, `categorical_columns`, `numerical_columns`, `model`, `task`, `num_trials`, `time_limit`, `project_name`, `token`, `username`, and `push_to_hub`.
    """
    if isinstance(config, dict):
        config = TabularParams(**config)

    logger.info("Starting training...")
    logger.info(f"Training config: {config}")

    train_data = None
    valid_data = None
    if config.data_path == f"{config.project_name}/autotrain-data":
        logger.info("loading dataset from disk")
        train_data = load_from_disk(config.data_path)[config.train_split]
    else:
        if ":" in config.train_split:
            dataset_config_name, split = config.train_split.split(":")
            train_data = load_dataset(
                config.data_path,
                name=dataset_config_name,
                split=split,
                token=config.token,
                trust_remote_code=ALLOW_REMOTE_CODE,
            )
        else:
            train_data = load_dataset(
                config.data_path,
                split=config.train_split,
                token=config.token,
                trust_remote_code=ALLOW_REMOTE_CODE,
            )
    train_data = train_data.to_pandas()

    if config.valid_split is not None:
        if config.data_path == f"{config.project_name}/autotrain-data":
            logger.info("loading dataset from disk")
            valid_data = load_from_disk(config.data_path)[config.valid_split]
        else:
            if ":" in config.valid_split:
                dataset_config_name, split = config.valid_split.split(":")
                valid_data = load_dataset(
                    config.data_path,
                    name=dataset_config_name,
                    split=split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
            else:
                valid_data = load_dataset(
                    config.data_path,
                    split=config.valid_split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
        valid_data = valid_data.to_pandas()

    if valid_data is None:
        raise Exception("valid_data is None. Please provide a valid_split for tabular training.")

    # determine which columns are categorical
    if config.categorical_columns is None:
        config.categorical_columns = utils.get_categorical_columns(train_data)
    if config.numerical_columns is None:
        config.numerical_columns = utils.get_numerical_columns(train_data)

    _id_target_cols = (
        [config.id_column] + config.target_columns if config.id_column is not None else config.target_columns
    )
    config.numerical_columns = [c for c in config.numerical_columns if c not in _id_target_cols]
    config.categorical_columns = [c for c in config.categorical_columns if c not in _id_target_cols]

    useful_columns = config.categorical_columns + config.numerical_columns

    logger.info(f"Categorical columns: {config.categorical_columns}")
    logger.info(f"Numerical columns: {config.numerical_columns}")

    # convert object columns to categorical
    for col in config.categorical_columns:
        train_data[col] = train_data[col].astype("category")
        valid_data[col] = valid_data[col].astype("category")

    logger.info(f"Useful columns: {useful_columns}")

    target_encoders = {}
    if config.task == "classification":
        for target_column in config.target_columns:
            target_encoder = preprocessing.LabelEncoder()
            target_encoder.fit(train_data[target_column])
            target_encoders[target_column] = target_encoder

    # encode target columns in train and valid data
    for k, v in target_encoders.items():
        train_data.loc[:, k] = v.transform(train_data[k])
        valid_data.loc[:, k] = v.transform(valid_data[k])

    numeric_transformer = "passthrough"
    categorical_transformer = "passthrough"
    transformers = []
    preprocessor = None

    numeric_steps = []
    imputer = utils.get_imputer(config.numerical_imputer)
    scaler = utils.get_scaler(config.numeric_scaler)
    if imputer is not None:
        numeric_steps.append(("num_imputer", imputer))
    if scaler is not None:
        numeric_steps.append(("num_scaler", scaler))

    if len(numeric_steps) > 0:
        numeric_transformer = pipeline.Pipeline(numeric_steps)
        transformers.append(("numeric", numeric_transformer, config.numerical_columns))

    categorical_steps = []
    imputer = utils.get_imputer(config.categorical_imputer)
    if imputer is not None:
        categorical_steps.append(("cat_imputer", imputer))

    if len(config.categorical_columns) > 0:
        if config.model in ("xgboost", "lightgbm", "randomforest", "catboost", "extratrees"):
            categorical_steps.append(
                (
                    "cat_encoder",
                    preprocessing.OrdinalEncoder(
                        handle_unknown="use_encoded_value",
                        categories="auto",
                        unknown_value=np.nan,
                    ),
                )
            )
        else:
            categorical_steps.append(
                (
                    "cat_encoder",
                    preprocessing.OneHotEncoder(handle_unknown="ignore"),
                )
            )

    if len(categorical_steps) > 0:
        categorical_transformer = pipeline.Pipeline(categorical_steps)
        transformers.append(("categorical", categorical_transformer, config.categorical_columns))

    if len(transformers) > 0:
        preprocessor = ColumnTransformer(transformers=transformers, verbose=True, n_jobs=-1)
        logger.info(f"Preprocessor: {preprocessor}")

    xtrain = train_data[useful_columns].reset_index(drop=True)
    xvalid = valid_data[useful_columns].reset_index(drop=True)

    ytrain = train_data[config.target_columns].values
    yvalid = valid_data[config.target_columns].values

    # determine sub_task
    if config.task == "classification":
        if len(target_encoders) == 1:
            if len(target_encoders[config.target_columns[0]].classes_) == 2:
                sub_task = "binary_classification"
            else:
                sub_task = "multi_class_classification"
        else:
            sub_task = "multi_label_classification"
    else:
        if len(config.target_columns) > 1:
            sub_task = "multi_column_regression"
        else:
            sub_task = "single_column_regression"

    eval_metric, direction = utils.get_metric_direction(sub_task)

    logger.info(f"Sub task: {sub_task}")

    args = {
        "model_name": config.model,
        "xtrain": xtrain,
        "xvalid": xvalid,
        "ytrain": ytrain,
        "yvalid": yvalid,
        "eval_metric": eval_metric,
        "task": sub_task,
        "preprocessor": preprocessor,
    }

    optimize_func = partial(optimize, **args)
    study = optuna.create_study(direction=direction, study_name="AutoTrain")
    study.optimize(optimize_func, n_trials=config.num_trials, timeout=config.time_limit)
    best_params = study.best_params

    logger.info(f"Best params: {best_params}")
    best_models, best_preprocessors, best_metrics = optimize(best_params, **args)

    models = (
        [pipeline.Pipeline([("preprocessor", best_preprocessors), ("model", m)]) for m in best_models]
        if best_preprocessors is not None
        else best_models
    )

    joblib.dump(
        models[0] if len(models) == 1 else models,
        os.path.join(config.project_name, "model.joblib"),
    )
    joblib.dump(target_encoders, os.path.join(config.project_name, "target_encoders.joblib"))

    model_card = utils.create_model_card(config, sub_task, best_params, best_metrics)

    if model_card is not None:
        with open(os.path.join(config.project_name, "README.md"), "w") as fp:
            fp.write(f"{model_card}")

    # remove token key from training_params.json located in output directory
    # first check if file exists
    if os.path.exists(f"{config.project_name}/training_params.json"):
        training_params = json.load(open(f"{config.project_name}/training_params.json"))
        training_params.pop("token")
        json.dump(training_params, open(f"{config.project_name}/training_params.json", "w"))

    # save model card to output directory as README.md
    with open(f"{config.project_name}/README.md", "w") as f:
        f.write(model_card)

    if config.push_to_hub:
        remove_autotrain_data(config)
        save_training_params(config)
        logger.info("Pushing model to hub...")
        api = HfApi(token=config.token)
        api.create_repo(repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True)
        api.upload_folder(
            folder_path=config.project_name, repo_id=f"{config.username}/{config.project_name}", repo_type="model"
        )

    pause_space(config)


if __name__ == "__main__":
    args = parse_args()
    training_config = json.load(open(args.training_config))
    config = TabularParams(**training_config)
    train(config)