Spaces:
Sleeping
Sleeping
File size: 21,578 Bytes
33d4721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import copy
from collections import defaultdict
from dataclasses import dataclass
from functools import partial
from typing import List, Optional
import numpy as np
from sklearn import ensemble, impute, linear_model
from sklearn import metrics as skmetrics
from sklearn import naive_bayes, neighbors, pipeline, preprocessing, svm, tree
from xgboost import XGBClassifier, XGBRegressor
MARKDOWN = """
---
tags:
- autotrain
- tabular
- {task}
- tabular-{task}
datasets:
- {dataset}
---
# Model Trained Using AutoTrain
- Problem type: Tabular {task}
## Validation Metrics
{metrics}
## Best Params
{params}
## Usage
```python
import json
import joblib
import pandas as pd
model = joblib.load('model.joblib')
config = json.load(open('config.json'))
features = config['features']
# data = pd.read_csv("data.csv")
data = data[features]
predictions = model.predict(data) # or model.predict_proba(data)
# predictions can be converted to original labels using label_encoders.pkl
```
"""
_MODELS: dict = defaultdict(dict)
_MODELS["xgboost"]["classification"] = XGBClassifier
_MODELS["xgboost"]["regression"] = XGBRegressor
_MODELS["logistic_regression"]["classification"] = linear_model.LogisticRegression
_MODELS["logistic_regression"]["regression"] = linear_model.LogisticRegression
_MODELS["random_forest"]["classification"] = ensemble.RandomForestClassifier
_MODELS["random_forest"]["regression"] = ensemble.RandomForestRegressor
_MODELS["extra_trees"]["classification"] = ensemble.ExtraTreesClassifier
_MODELS["extra_trees"]["regression"] = ensemble.ExtraTreesRegressor
_MODELS["gradient_boosting"]["classification"] = ensemble.GradientBoostingClassifier
_MODELS["gradient_boosting"]["regression"] = ensemble.GradientBoostingRegressor
_MODELS["adaboost"]["classification"] = ensemble.AdaBoostClassifier
_MODELS["adaboost"]["regression"] = ensemble.AdaBoostRegressor
_MODELS["ridge"]["classification"] = linear_model.RidgeClassifier
_MODELS["ridge"]["regression"] = linear_model.Ridge
_MODELS["svm"]["classification"] = svm.LinearSVC
_MODELS["svm"]["regression"] = svm.LinearSVR
_MODELS["decision_tree"]["classification"] = tree.DecisionTreeClassifier
_MODELS["decision_tree"]["regression"] = tree.DecisionTreeRegressor
_MODELS["lasso"]["regression"] = linear_model.Lasso
_MODELS["linear_regression"]["regression"] = linear_model.LinearRegression
_MODELS["naive_bayes"]["classification"] = naive_bayes.GaussianNB
_MODELS["knn"]["classification"] = neighbors.KNeighborsClassifier
_MODELS["knn"]["regression"] = neighbors.KNeighborsRegressor
CLASSIFICATION_TASKS = ("binary_classification", "multi_class_classification", "multi_label_classification")
REGRESSION_TASKS = ("single_column_regression", "multi_column_regression")
@dataclass
class TabularMetrics:
"""
A class to calculate various metrics for different types of tabular tasks.
Attributes:
-----------
sub_task : str
The type of sub-task. It can be one of the following:
- "binary_classification"
- "multi_class_classification"
- "single_column_regression"
- "multi_column_regression"
- "multi_label_classification"
labels : Optional[List], optional
The list of labels for multi-class classification tasks (default is None).
Methods:
--------
__post_init__():
Initializes the valid metrics based on the sub-task type.
calculate(y_true, y_pred):
Calculates the metrics based on the true and predicted values.
Parameters:
-----------
y_true : array-like
True labels or values.
y_pred : array-like
Predicted labels or values.
Returns:
--------
dict
A dictionary with metric names as keys and their calculated values as values.
"""
sub_task: str
labels: Optional[List] = None
def __post_init__(self):
if self.sub_task == "binary_classification":
self.valid_metrics = {
"auc": skmetrics.roc_auc_score,
"logloss": skmetrics.log_loss,
"f1": skmetrics.f1_score,
"accuracy": skmetrics.accuracy_score,
"precision": skmetrics.precision_score,
"recall": skmetrics.recall_score,
}
elif self.sub_task == "multi_class_classification":
self.valid_metrics = {
"logloss": partial(skmetrics.log_loss, labels=self.labels),
"accuracy": skmetrics.accuracy_score,
"mlogloss": partial(skmetrics.log_loss, labels=self.labels),
"f1_macro": partial(skmetrics.f1_score, average="macro", labels=self.labels),
"f1_micro": partial(skmetrics.f1_score, average="micro", labels=self.labels),
"f1_weighted": partial(skmetrics.f1_score, average="weighted", labels=self.labels),
"precision_macro": partial(skmetrics.precision_score, average="macro", labels=self.labels),
"precision_micro": partial(skmetrics.precision_score, average="micro", labels=self.labels),
"precision_weighted": partial(skmetrics.precision_score, average="weighted", labels=self.labels),
"recall_macro": partial(skmetrics.recall_score, average="macro", labels=self.labels),
"recall_micro": partial(skmetrics.recall_score, average="micro", labels=self.labels),
"recall_weighted": partial(skmetrics.recall_score, average="weighted", labels=self.labels),
}
elif self.sub_task in ("single_column_regression", "multi_column_regression"):
self.valid_metrics = {
"r2": skmetrics.r2_score,
"mse": skmetrics.mean_squared_error,
"mae": skmetrics.mean_absolute_error,
"rmse": partial(skmetrics.mean_squared_error, squared=False),
"rmsle": partial(skmetrics.mean_squared_log_error, squared=False),
}
elif self.sub_task == "multi_label_classification":
self.valid_metrics = {
"logloss": skmetrics.log_loss,
}
else:
raise ValueError("Invalid problem type")
def calculate(self, y_true, y_pred):
metrics = {}
for metric_name, metric_func in self.valid_metrics.items():
if self.sub_task == "binary_classification":
if metric_name == "auc":
metrics[metric_name] = metric_func(y_true, y_pred[:, 1])
elif metric_name == "logloss":
metrics[metric_name] = metric_func(y_true, y_pred)
else:
metrics[metric_name] = metric_func(y_true, y_pred[:, 1] >= 0.5)
elif self.sub_task == "multi_class_classification":
if metric_name in (
"accuracy",
"f1_macro",
"f1_micro",
"f1_weighted",
"precision_macro",
"precision_micro",
"precision_weighted",
"recall_macro",
"recall_micro",
"recall_weighted",
):
metrics[metric_name] = metric_func(y_true, np.argmax(y_pred, axis=1))
else:
metrics[metric_name] = metric_func(y_true, y_pred)
else:
if metric_name == "rmsle":
temp_pred = copy.deepcopy(y_pred)
temp_pred = np.clip(temp_pred, 0, None)
metrics[metric_name] = metric_func(y_true, temp_pred)
else:
metrics[metric_name] = metric_func(y_true, y_pred)
return metrics
class TabularModel:
"""
A class used to represent a Tabular Model for AutoTrain training.
Attributes
----------
model : str
The name of the model to be used.
preprocessor : object
The preprocessor to be applied to the data.
sub_task : str
The sub-task type, either classification or regression.
params : dict
The parameters to be passed to the model.
use_predict_proba : bool
A flag indicating whether to use the predict_proba method.
Methods
-------
_get_model():
Retrieves the appropriate model based on the sub-task and model name.
"""
def __init__(self, model, preprocessor, sub_task, params):
self.model = model
self.preprocessor = preprocessor
self.sub_task = sub_task
self.params = params
self.use_predict_proba = True
_model = self._get_model()
if self.preprocessor is not None:
self.pipeline = pipeline.Pipeline([("preprocessor", self.preprocessor), ("model", _model)])
else:
self.pipeline = pipeline.Pipeline([("model", _model)])
def _get_model(self):
if self.model in _MODELS:
if self.sub_task in CLASSIFICATION_TASKS:
if self.model in ("svm", "ridge"):
self.use_predict_proba = False
return _MODELS[self.model]["classification"](**self.params)
elif self.sub_task in REGRESSION_TASKS:
self.use_predict_proba = False
return _MODELS[self.model]["regression"](**self.params)
else:
raise ValueError("Invalid task")
else:
raise ValueError("Invalid model")
def get_params(trial, model, task):
if model == "xgboost":
params = {
"learning_rate": trial.suggest_float("learning_rate", 1e-2, 0.25, log=True),
"reg_lambda": trial.suggest_float("reg_lambda", 1e-8, 100.0, log=True),
"reg_alpha": trial.suggest_float("reg_alpha", 1e-8, 100.0, log=True),
"subsample": trial.suggest_float("subsample", 0.1, 1.0),
"colsample_bytree": trial.suggest_float("colsample_bytree", 0.1, 1.0),
"max_depth": trial.suggest_int("max_depth", 1, 9),
"early_stopping_rounds": trial.suggest_int("early_stopping_rounds", 100, 500),
"n_estimators": trial.suggest_categorical("n_estimators", [7000, 15000, 20000]),
"tree_method": "hist",
"random_state": 42,
}
return params
if model == "logistic_regression":
if task in CLASSIFICATION_TASKS:
params = {
"C": trial.suggest_float("C", 1e-8, 1e3, log=True),
"fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]),
"solver": trial.suggest_categorical("solver", ["liblinear", "saga"]),
"penalty": trial.suggest_categorical("penalty", ["l1", "l2"]),
"n_jobs": -1,
}
return params
raise ValueError("Task not supported")
if model == "random_forest":
params = {
"n_estimators": trial.suggest_int("n_estimators", 10, 10000),
"max_depth": trial.suggest_int("max_depth", 2, 15),
"max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2", None]),
"min_samples_split": trial.suggest_int("min_samples_split", 2, 20),
"min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20),
"bootstrap": trial.suggest_categorical("bootstrap", [True, False]),
"n_jobs": -1,
}
if task in CLASSIFICATION_TASKS:
params["criterion"] = trial.suggest_categorical("criterion", ["gini", "entropy"])
return params
if task in REGRESSION_TASKS:
params["criterion"] = trial.suggest_categorical(
"criterion", ["squared_error", "absolute_error", "poisson"]
)
return params
raise ValueError("Task not supported")
if model == "extra_trees":
params = {
"n_estimators": trial.suggest_int("n_estimators", 10, 10000),
"max_depth": trial.suggest_int("max_depth", 2, 15),
"max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2", None]),
"min_samples_split": trial.suggest_int("min_samples_split", 2, 20),
"min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20),
"bootstrap": trial.suggest_categorical("bootstrap", [True, False]),
"n_jobs": -1,
}
if task in CLASSIFICATION_TASKS:
params["criterion"] = trial.suggest_categorical("criterion", ["gini", "entropy"])
return params
if task in REGRESSION_TASKS:
params["criterion"] = trial.suggest_categorical("criterion", ["squared_error", "absolute_error"])
return params
raise ValueError("Task not supported")
if model == "decision_tree":
params = {
"max_depth": trial.suggest_int("max_depth", 1, 15),
"min_samples_split": trial.suggest_int("min_samples_split", 2, 20),
"min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20),
"max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2", None]),
"splitter": trial.suggest_categorical("splitter", ["best", "random"]),
}
if task in CLASSIFICATION_TASKS:
params["criterion"] = trial.suggest_categorical("criterion", ["gini", "entropy"])
return params
if task in REGRESSION_TASKS:
params["criterion"] = trial.suggest_categorical(
"criterion", ["squared_error", "absolute_error", "friedman_mse", "poisson"]
)
return params
raise ValueError("Task not supported")
if model == "linear_regression":
if task in REGRESSION_TASKS:
params = {
"fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]),
}
return params
raise ValueError("Task not supported")
if model == "svm":
if task in CLASSIFICATION_TASKS:
params = {
"C": trial.suggest_float("C", 1e-8, 1e3, log=True),
"fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]),
"penalty": "l2",
"max_iter": trial.suggest_int("max_iter", 1000, 10000),
}
return params
if task in REGRESSION_TASKS:
params = {
"C": trial.suggest_float("C", 1e-8, 1e3, log=True),
"fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]),
"loss": trial.suggest_categorical("loss", ["epsilon_insensitive", "squared_epsilon_insensitive"]),
"epsilon": trial.suggest_float("epsilon", 1e-8, 1e-1, log=True),
"max_iter": trial.suggest_int("max_iter", 1000, 10000),
}
return params
raise ValueError("Task not supported")
if model == "ridge":
params = {
"alpha": trial.suggest_float("alpha", 1e-8, 1e3, log=True),
"fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]),
"max_iter": trial.suggest_int("max_iter", 1000, 10000),
}
if task in CLASSIFICATION_TASKS:
return params
if task in REGRESSION_TASKS:
return params
raise ValueError("Task not supported")
if model == "lasso":
if task in REGRESSION_TASKS:
params = {
"alpha": trial.suggest_float("alpha", 1e-8, 1e3, log=True),
"fit_intercept": trial.suggest_categorical("fit_intercept", [True, False]),
"max_iter": trial.suggest_int("max_iter", 1000, 10000),
}
return params
raise ValueError("Task not supported")
if model == "knn":
params = {
"n_neighbors": trial.suggest_int("n_neighbors", 1, 25),
"weights": trial.suggest_categorical("weights", ["uniform", "distance"]),
"algorithm": trial.suggest_categorical("algorithm", ["ball_tree", "kd_tree", "brute"]),
"leaf_size": trial.suggest_int("leaf_size", 1, 100),
"p": trial.suggest_categorical("p", [1, 2]),
"metric": trial.suggest_categorical("metric", ["minkowski", "euclidean", "manhattan"]),
}
if task in CLASSIFICATION_TASKS or task in REGRESSION_TASKS:
return params
raise ValueError("Task not supported")
return ValueError("Invalid model")
def get_imputer(imputer_name):
"""
Returns an imputer object based on the specified imputer name.
Parameters:
imputer_name (str): The name of the imputer to use. Can be one of the following:
- "median": Uses the median value for imputation.
- "mean": Uses the mean value for imputation.
- "most_frequent": Uses the most frequent value for imputation.
If None, returns None.
Returns:
impute.SimpleImputer or None: An instance of SimpleImputer with the specified strategy,
or None if imputer_name is None.
Raises:
ValueError: If an invalid imputer_name is provided.
"""
if imputer_name is None:
return None
if imputer_name == "median":
return impute.SimpleImputer(strategy="median")
if imputer_name == "mean":
return impute.SimpleImputer(strategy="mean")
if imputer_name == "most_frequent":
return impute.SimpleImputer(strategy="most_frequent")
raise ValueError("Invalid imputer")
def get_scaler(scaler_name):
"""
Returns a scaler object based on the provided scaler name.
Parameters:
scaler_name (str): The name of the scaler to be returned.
Possible values are "standard", "minmax", "robust", and "normal".
If None, returns None.
Returns:
scaler: An instance of the corresponding scaler from sklearn.preprocessing.
If the scaler_name is None, returns None.
Raises:
ValueError: If the scaler_name is not one of the expected values.
"""
if scaler_name is None:
return None
if scaler_name == "standard":
return preprocessing.StandardScaler()
if scaler_name == "minmax":
return preprocessing.MinMaxScaler()
if scaler_name == "robust":
return preprocessing.RobustScaler()
if scaler_name == "normal":
return preprocessing.Normalizer()
raise ValueError("Invalid scaler")
def get_metric_direction(sub_task):
"""
Determines the appropriate metric and its optimization direction based on the given sub-task.
Parameters:
sub_task (str): The type of sub-task. Must be one of the following:
- "binary_classification"
- "multi_class_classification"
- "single_column_regression"
- "multi_label_classification"
- "multi_column_regression"
Returns:
tuple: A tuple containing:
- str: The metric to be used (e.g., "logloss", "mlogloss", "rmse").
- str: The direction of optimization ("minimize").
Raises:
ValueError: If the provided sub_task is not one of the recognized types.
"""
if sub_task == "binary_classification":
return "logloss", "minimize"
if sub_task == "multi_class_classification":
return "mlogloss", "minimize"
if sub_task == "single_column_regression":
return "rmse", "minimize"
if sub_task == "multi_label_classification":
return "logloss", "minimize"
if sub_task == "multi_column_regression":
return "rmse", "minimize"
raise ValueError("Invalid sub_task")
def get_categorical_columns(df):
"""
Extracts the names of categorical columns from a DataFrame.
Parameters:
df (pandas.DataFrame): The DataFrame from which to extract categorical columns.
Returns:
list: A list of column names that are of categorical data type (either 'category' or 'object').
"""
return list(df.select_dtypes(include=["category", "object"]).columns)
def get_numerical_columns(df):
"""
Extracts and returns a list of numerical column names from a given DataFrame.
Args:
df (pandas.DataFrame): The DataFrame from which to extract numerical columns.
Returns:
list: A list of column names that have numerical data types.
"""
return list(df.select_dtypes(include=["number"]).columns)
def create_model_card(config, sub_task, best_params, best_metrics):
"""
Generates a markdown formatted model card with the given configuration, sub-task, best parameters, and best metrics.
Args:
config (object): Configuration object containing task and data path information.
sub_task (str): The specific sub-task for which the model card is being created.
best_params (dict): Dictionary containing the best hyperparameters for the model.
best_metrics (dict): Dictionary containing the best performance metrics for the model.
Returns:
str: A string containing the formatted model card in markdown.
"""
best_metrics = "\n".join([f"- {k}: {v}" for k, v in best_metrics.items()])
best_params = "\n".join([f"- {k}: {v}" for k, v in best_params.items()])
return MARKDOWN.format(
task=config.task,
dataset=config.data_path,
metrics=best_metrics,
params=best_params,
)
|