File size: 6,312 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os

import numpy as np
import requests
from sklearn import metrics


BINARY_CLASSIFICATION_EVAL_METRICS = (
    "eval_loss",
    "eval_accuracy",
    "eval_f1",
    "eval_auc",
    "eval_precision",
    "eval_recall",
)

MULTI_CLASS_CLASSIFICATION_EVAL_METRICS = (
    "eval_loss",
    "eval_accuracy",
    "eval_f1_macro",
    "eval_f1_micro",
    "eval_f1_weighted",
    "eval_precision_macro",
    "eval_precision_micro",
    "eval_precision_weighted",
    "eval_recall_macro",
    "eval_recall_micro",
    "eval_recall_weighted",
)

MODEL_CARD = """
---
library_name: transformers
tags:
- autotrain
- text-classification{base_model}
widget:
- text: "I love AutoTrain"{dataset_tag}
---

# Model Trained Using AutoTrain

- Problem type: Text Classification

## Validation Metrics
{validation_metrics}
"""


def _binary_classification_metrics(pred):
    """
    Calculate various binary classification metrics.

    Args:
        pred (tuple): A tuple containing raw predictions and true labels.
                      - raw_predictions (numpy.ndarray): The raw prediction scores from the model.
                      - labels (numpy.ndarray): The true labels.

    Returns:
        dict: A dictionary containing the following metrics:
              - "f1" (float): The F1 score.
              - "precision" (float): The precision score.
              - "recall" (float): The recall score.
              - "auc" (float): The Area Under the ROC Curve (AUC) score.
              - "accuracy" (float): The accuracy score.
    """
    raw_predictions, labels = pred
    predictions = np.argmax(raw_predictions, axis=1)
    result = {
        "f1": metrics.f1_score(labels, predictions),
        "precision": metrics.precision_score(labels, predictions),
        "recall": metrics.recall_score(labels, predictions),
        "auc": metrics.roc_auc_score(labels, raw_predictions[:, 1]),
        "accuracy": metrics.accuracy_score(labels, predictions),
    }
    return result


def _multi_class_classification_metrics(pred):
    """
    Compute various classification metrics for multi-class classification.

    Args:
        pred (tuple): A tuple containing raw predictions and true labels.
                      - raw_predictions (numpy.ndarray): The raw prediction scores for each class.
                      - labels (numpy.ndarray): The true labels.

    Returns:
        dict: A dictionary containing the following metrics:
              - "f1_macro": F1 score with macro averaging.
              - "f1_micro": F1 score with micro averaging.
              - "f1_weighted": F1 score with weighted averaging.
              - "precision_macro": Precision score with macro averaging.
              - "precision_micro": Precision score with micro averaging.
              - "precision_weighted": Precision score with weighted averaging.
              - "recall_macro": Recall score with macro averaging.
              - "recall_micro": Recall score with micro averaging.
              - "recall_weighted": Recall score with weighted averaging.
              - "accuracy": Accuracy score.
    """
    raw_predictions, labels = pred
    predictions = np.argmax(raw_predictions, axis=1)
    results = {
        "f1_macro": metrics.f1_score(labels, predictions, average="macro"),
        "f1_micro": metrics.f1_score(labels, predictions, average="micro"),
        "f1_weighted": metrics.f1_score(labels, predictions, average="weighted"),
        "precision_macro": metrics.precision_score(labels, predictions, average="macro"),
        "precision_micro": metrics.precision_score(labels, predictions, average="micro"),
        "precision_weighted": metrics.precision_score(labels, predictions, average="weighted"),
        "recall_macro": metrics.recall_score(labels, predictions, average="macro"),
        "recall_micro": metrics.recall_score(labels, predictions, average="micro"),
        "recall_weighted": metrics.recall_score(labels, predictions, average="weighted"),
        "accuracy": metrics.accuracy_score(labels, predictions),
    }
    return results


def create_model_card(config, trainer, num_classes):
    """
    Generates a model card for a text classification model.

    Args:
        config (object): Configuration object containing various settings and paths.
        trainer (object): Trainer object used for evaluating the model.
        num_classes (int): Number of classes in the classification task.

    Returns:
        str: A formatted string representing the model card.
    """
    if config.valid_split is not None:
        eval_scores = trainer.evaluate()
        valid_metrics = (
            BINARY_CLASSIFICATION_EVAL_METRICS if num_classes == 2 else MULTI_CLASS_CLASSIFICATION_EVAL_METRICS
        )
        eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in valid_metrics]
        eval_scores = "\n\n".join(eval_scores)

    else:
        eval_scores = "No validation metrics available"

    if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
        dataset_tag = ""
    else:
        dataset_tag = f"\ndatasets:\n- {config.data_path}"

    if os.path.isdir(config.model):
        base_model = ""
    else:
        base_model = f"\nbase_model: {config.model}"

    model_card = MODEL_CARD.format(
        dataset_tag=dataset_tag,
        validation_metrics=eval_scores,
        base_model=base_model,
    )
    return model_card


def pause_endpoint(params):
    """
    Pauses a Hugging Face endpoint using the provided parameters.

    This function constructs an API URL using the endpoint ID from the environment
    variables, and sends a POST request to pause the specified endpoint.

    Args:
        params (object): An object containing the following attribute:
            - token (str): The authorization token required to authenticate the API request.

    Returns:
        dict: The JSON response from the API call.
    """
    endpoint_id = os.environ["ENDPOINT_ID"]
    username = endpoint_id.split("/")[0]
    project_name = endpoint_id.split("/")[1]
    api_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{project_name}/pause"
    headers = {"Authorization": f"Bearer {params.token}"}
    r = requests.post(api_url, headers=headers)
    return r.json()