File size: 10,867 Bytes
33d4721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os

import torch
from accelerate import PartialState
from huggingface_hub import HfApi
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from transformers import AutoConfig, BitsAndBytesConfig, PaliGemmaForConditionalGeneration

from autotrain import logger
from autotrain.trainers.common import (
    ALLOW_REMOTE_CODE,
    LossLoggingCallback,
    TrainStartCallback,
    UploadLogs,
    pause_space,
    remove_autotrain_data,
    save_training_params,
)


TARGET_MODULES = {}

SUPPORTED_MODELS = [
    "PaliGemmaForConditionalGeneration",
    # "Florence2ForConditionalGeneration", support later
]

MODEL_CARD = """
---
tags:
- autotrain
- text-generation-inference
- image-text-to-text
- text-generation{peft}
library_name: transformers{base_model}
license: other{dataset_tag}
---

# Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).

# Usage

```python
# you will need to adjust code if you didnt use peft

from PIL import Image
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import requests
from peft import PeftModel

base_model_id = BASE_MODEL_ID
peft_model_id = THIS_MODEL_ID
max_new_tokens = 100
text = "Whats on the flower?"
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/bee.JPG?download=true"
image = Image.open(requests.get(img_url, stream=True).raw)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
base_model = PaliGemmaForConditionalGeneration.from_pretrained(base_model_id)
processor = PaliGemmaProcessor.from_pretrained(base_model_id)

model = PeftModel.from_pretrained(base_model, peft_model_id)
model.merge_and_unload()

model = model.eval().to(device)

inputs = processor(text=text, images=image, return_tensors="pt").to(device)
with torch.inference_mode():
    generated_ids = model.generate(
        **inputs,
        max_new_tokens=max_new_tokens,
        do_sample=False,
    )
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(result)
```
"""


def get_target_modules(config):
    if config.target_modules is None:
        return TARGET_MODULES.get(config.model)
    if config.target_modules.strip() == "":
        return TARGET_MODULES.get(config.model)
    if config.target_modules.strip().lower() == "all-linear":
        return "all-linear"
    return config.target_modules.split(",")


def create_model_card(config):
    if config.peft:
        peft = "\n- peft"
    else:
        peft = ""

    if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
        dataset_tag = ""
    else:
        dataset_tag = f"\ndatasets:\n- {config.data_path}"

    if os.path.isdir(config.model):
        base_model = ""
    else:
        base_model = f"\nbase_model: {config.model}"

    model_card = MODEL_CARD.format(
        dataset_tag=dataset_tag,
        peft=peft,
        base_model=base_model,
    )
    return model_card.strip()


def check_model_support(config):
    api = HfApi(token=config.token)
    model_info = api.model_info(config.model)
    architectures = model_info.config.get("architectures", [])
    for arch in architectures:
        if arch in SUPPORTED_MODELS:
            return True
    return False


def configure_logging_steps(config, train_data, valid_data):
    logger.info("configuring logging steps")
    if config.logging_steps == -1:
        if config.valid_split is not None:
            logging_steps = int(0.2 * len(valid_data) / config.batch_size)
        else:
            logging_steps = int(0.2 * len(train_data) / config.batch_size)
        if logging_steps == 0:
            logging_steps = 1
        if logging_steps > 25:
            logging_steps = 25
        config.logging_steps = logging_steps
    else:
        logging_steps = config.logging_steps
    logger.info(f"Logging steps: {logging_steps}")
    return logging_steps


def configure_training_args(config, logging_steps):
    logger.info("configuring training args")
    training_args = dict(
        output_dir=config.project_name,
        per_device_train_batch_size=config.batch_size,
        per_device_eval_batch_size=config.batch_size,
        learning_rate=config.lr,
        num_train_epochs=config.epochs,
        eval_strategy=config.eval_strategy if config.valid_split is not None else "no",
        logging_steps=logging_steps,
        save_total_limit=config.save_total_limit,
        save_strategy=config.eval_strategy if config.valid_split is not None else "no",
        gradient_accumulation_steps=config.gradient_accumulation,
        report_to=config.log,
        auto_find_batch_size=config.auto_find_batch_size,
        lr_scheduler_type=config.scheduler,
        optim=config.optimizer,
        warmup_ratio=config.warmup_ratio,
        weight_decay=config.weight_decay,
        max_grad_norm=config.max_grad_norm,
        push_to_hub=False,
        load_best_model_at_end=True if config.valid_split is not None else False,
        ddp_find_unused_parameters=False,
        gradient_checkpointing=not config.disable_gradient_checkpointing,
        remove_unused_columns=False,
    )

    if not config.disable_gradient_checkpointing:
        if config.peft and config.quantization in ("int4", "int8"):
            training_args["gradient_checkpointing_kwargs"] = {"use_reentrant": True}
        else:
            training_args["gradient_checkpointing_kwargs"] = {"use_reentrant": False}

    if config.mixed_precision == "fp16":
        training_args["fp16"] = True
    if config.mixed_precision == "bf16":
        training_args["bf16"] = True

    return training_args


def get_callbacks(config):
    callbacks = [UploadLogs(config=config), LossLoggingCallback(), TrainStartCallback()]
    return callbacks


def get_model(config):
    logger.info("loading model config...")
    model_config = AutoConfig.from_pretrained(
        config.model,
        token=config.token,
        trust_remote_code=ALLOW_REMOTE_CODE,
        use_cache=config.disable_gradient_checkpointing,
    )

    logger.info("loading model...")
    if config.peft:
        if config.quantization == "int4":
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=False,
            )
        elif config.quantization == "int8":
            bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        else:
            bnb_config = None

        model = PaliGemmaForConditionalGeneration.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            quantization_config=bnb_config,
            trust_remote_code=ALLOW_REMOTE_CODE,
        )
    else:
        model = PaliGemmaForConditionalGeneration.from_pretrained(
            config.model,
            config=model_config,
            token=config.token,
            trust_remote_code=ALLOW_REMOTE_CODE,
        )

    logger.info(f"model dtype: {model.dtype}")

    if config.peft:
        logger.info("preparing peft model...")
        if config.quantization is not None:
            gradient_checkpointing_kwargs = {}
            if not config.disable_gradient_checkpointing:
                if config.quantization in ("int4", "int8"):
                    gradient_checkpointing_kwargs = {"use_reentrant": True}
                else:
                    gradient_checkpointing_kwargs = {"use_reentrant": False}
            model = prepare_model_for_kbit_training(
                model,
                use_gradient_checkpointing=not config.disable_gradient_checkpointing,
                gradient_checkpointing_kwargs=gradient_checkpointing_kwargs,
            )
        else:
            model.enable_input_require_grads()

        peft_config = LoraConfig(
            r=config.lora_r,
            lora_alpha=config.lora_alpha,
            lora_dropout=config.lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
            target_modules=get_target_modules(config),
        )
        model = get_peft_model(model, peft_config)

    for param in model.vision_tower.parameters():
        param.requires_grad = False

    for param in model.multi_modal_projector.parameters():
        param.requires_grad = False

    return model


def merge_adapter(base_model_path, target_model_path, adapter_path):
    logger.info("Loading adapter...")
    model = PaliGemmaForConditionalGeneration.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True,
        trust_remote_code=ALLOW_REMOTE_CODE,
    )

    model = PeftModel.from_pretrained(model, adapter_path)
    model = model.merge_and_unload()

    logger.info("Saving target model...")
    model.save_pretrained(target_model_path)


def post_training_steps(config, trainer):
    logger.info("Finished training, saving model...")
    trainer.model.config.use_cache = True
    trainer.save_model(config.project_name)

    model_card = create_model_card(config)

    # save model card to output directory as README.md
    with open(f"{config.project_name}/README.md", "w", encoding="utf-8") as f:
        f.write(model_card)

    if config.peft and config.merge_adapter:
        logger.info("Merging adapter weights...")
        try:
            del trainer
            torch.cuda.empty_cache()
            merge_adapter(
                base_model_path=config.model,
                target_model_path=config.project_name,
                adapter_path=config.project_name,
            )
            # remove adapter weights: adapter_*
            for file in os.listdir(config.project_name):
                if file.startswith("adapter_"):
                    os.remove(f"{config.project_name}/{file}")
        except Exception as e:
            logger.warning(f"Failed to merge adapter weights: {e}")
            logger.warning("Skipping adapter merge. Only adapter weights will be saved.")

    if config.push_to_hub:
        if PartialState().process_index == 0:
            # remove data folder
            remove_autotrain_data(config)
            logger.info("Pushing model to hub...")
            save_training_params(config)
            api = HfApi(token=config.token)
            api.create_repo(
                repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True, exist_ok=True
            )
            api.upload_folder(
                folder_path=config.project_name,
                repo_id=f"{config.username}/{config.project_name}",
                repo_type="model",
            )

    if PartialState().process_index == 0:
        pause_space(config)