Spaces:
Sleeping
Sleeping
import collections | |
import json | |
import os | |
import numpy as np | |
from datasets import load_metric | |
from transformers import EvalPrediction | |
from autotrain import logger | |
MODEL_CARD = """ | |
--- | |
library_name: transformers | |
tags: | |
- autotrain | |
- question-answering{base_model} | |
widget: | |
- text: "Who loves AutoTrain?" | |
context: "Everyone loves AutoTrain"{dataset_tag} | |
--- | |
# Model Trained Using AutoTrain | |
- Problem type: Extractive Question Answering | |
## Validation Metrics | |
{validation_metrics} | |
## Usage | |
```python | |
import torch | |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer | |
model = AutoModelForQuestionAnswering.from_pretrained(...) | |
tokenizer = AutoTokenizer.from_pretrained(...) | |
from transformers import BertTokenizer, BertForQuestionAnswering | |
question, text = "Who loves AutoTrain?", "Everyone loves AutoTrain" | |
inputs = tokenizer(question, text, return_tensors='pt') | |
start_positions = torch.tensor([1]) | |
end_positions = torch.tensor([3]) | |
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) | |
loss = outputs.loss | |
start_scores = outputs.start_logits | |
end_scores = outputs.end_logits | |
``` | |
""" | |
SQUAD_METRIC = load_metric("squad") | |
SQUAD_V2_METRIC = load_metric("squad_v2") | |
def postprocess_qa_predictions( | |
examples, | |
features, | |
predictions, | |
config, | |
version_2_with_negative=False, | |
n_best_size=20, | |
max_answer_length=30, | |
null_score_diff_threshold=0.0, | |
output_dir=None, | |
prefix=None, | |
): | |
# This function is taken from: https://github.com/huggingface/transformers/blob/dcec4c4387850dff8123d5752aab8c1b5431465b/examples/pytorch/question-answering/run_qa.py#L470 | |
""" | |
Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the | |
original contexts. This is the base postprocessing functions for models that only return start and end logits. | |
Args: | |
examples: The non-preprocessed dataset (see the main script for more information). | |
features: The processed dataset (see the main script for more information). | |
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): | |
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its | |
first dimension must match the number of elements of :obj:`features`. | |
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the underlying dataset contains examples with no answers. | |
n_best_size (:obj:`int`, `optional`, defaults to 20): | |
The total number of n-best predictions to generate when looking for an answer. | |
max_answer_length (:obj:`int`, `optional`, defaults to 30): | |
The maximum length of an answer that can be generated. This is needed because the start and end predictions | |
are not conditioned on one another. | |
null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0): | |
The threshold used to select the null answer: if the best answer has a score that is less than the score of | |
the null answer minus this threshold, the null answer is selected for this example (note that the score of | |
the null answer for an example giving several features is the minimum of the scores for the null answer on | |
each feature: all features must be aligned on the fact they `want` to predict a null answer). | |
Only useful when :obj:`version_2_with_negative` is :obj:`True`. | |
output_dir (:obj:`str`, `optional`): | |
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if | |
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null | |
answers, are saved in `output_dir`. | |
prefix (:obj:`str`, `optional`): | |
If provided, the dictionaries mentioned above are saved with `prefix` added to their names. | |
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): | |
``logging`` log level (e.g., ``logging.WARNING``) | |
""" | |
if len(predictions) != 2: | |
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).") | |
all_start_logits, all_end_logits = predictions | |
if len(predictions[0]) != len(features): | |
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") | |
# Build a map example to its corresponding features. | |
example_id_to_index = {k: i for i, k in enumerate(examples["id"])} | |
features_per_example = collections.defaultdict(list) | |
for i, feature in enumerate(features): | |
features_per_example[example_id_to_index[feature["example_id"]]].append(i) | |
# The dictionaries we have to fill. | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
if version_2_with_negative: | |
scores_diff_json = collections.OrderedDict() | |
# Logging. | |
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") | |
# Let's loop over all the examples! | |
for example_index, example in enumerate(examples): | |
# Those are the indices of the features associated to the current example. | |
feature_indices = features_per_example[example_index] | |
min_null_prediction = None | |
prelim_predictions = [] | |
# Looping through all the features associated to the current example. | |
for feature_index in feature_indices: | |
# We grab the predictions of the model for this feature. | |
start_logits = all_start_logits[feature_index] | |
end_logits = all_end_logits[feature_index] | |
# This is what will allow us to map some the positions in our logits to span of texts in the original | |
# context. | |
offset_mapping = features[feature_index]["offset_mapping"] | |
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context | |
# available in the current feature. | |
token_is_max_context = features[feature_index].get("token_is_max_context", None) | |
# Update minimum null prediction. | |
feature_null_score = start_logits[0] + end_logits[0] | |
if min_null_prediction is None or min_null_prediction["score"] > feature_null_score: | |
min_null_prediction = { | |
"offsets": (0, 0), | |
"score": feature_null_score, | |
"start_logit": start_logits[0], | |
"end_logit": end_logits[0], | |
} | |
# Go through all possibilities for the `n_best_size` greater start and end logits. | |
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() | |
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() | |
for start_index in start_indexes: | |
for end_index in end_indexes: | |
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond | |
# to part of the input_ids that are not in the context. | |
if ( | |
start_index >= len(offset_mapping) | |
or end_index >= len(offset_mapping) | |
or offset_mapping[start_index] is None | |
or len(offset_mapping[start_index]) < 2 | |
or offset_mapping[end_index] is None | |
or len(offset_mapping[end_index]) < 2 | |
): | |
continue | |
# Don't consider answers with a length that is either < 0 or > max_answer_length. | |
if end_index < start_index or end_index - start_index + 1 > max_answer_length: | |
continue | |
# Don't consider answer that don't have the maximum context available (if such information is | |
# provided). | |
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): | |
continue | |
prelim_predictions.append( | |
{ | |
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), | |
"score": start_logits[start_index] + end_logits[end_index], | |
"start_logit": start_logits[start_index], | |
"end_logit": end_logits[end_index], | |
} | |
) | |
if version_2_with_negative and min_null_prediction is not None: | |
# Add the minimum null prediction | |
prelim_predictions.append(min_null_prediction) | |
null_score = min_null_prediction["score"] | |
# Only keep the best `n_best_size` predictions. | |
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] | |
# Add back the minimum null prediction if it was removed because of its low score. | |
if ( | |
version_2_with_negative | |
and min_null_prediction is not None | |
and not any(p["offsets"] == (0, 0) for p in predictions) | |
): | |
predictions.append(min_null_prediction) | |
# Use the offsets to gather the answer text in the original context. | |
context = example[config.text_column] | |
for pred in predictions: | |
offsets = pred.pop("offsets") | |
pred["text"] = context[offsets[0] : offsets[1]] | |
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid | |
# failure. | |
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""): | |
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0}) | |
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using | |
# the LogSumExp trick). | |
scores = np.array([pred.pop("score") for pred in predictions]) | |
exp_scores = np.exp(scores - np.max(scores)) | |
probs = exp_scores / exp_scores.sum() | |
# Include the probabilities in our predictions. | |
for prob, pred in zip(probs, predictions): | |
pred["probability"] = prob | |
# Pick the best prediction. If the null answer is not possible, this is easy. | |
if not version_2_with_negative: | |
all_predictions[example["id"]] = predictions[0]["text"] | |
else: | |
# Otherwise we first need to find the best non-empty prediction. | |
i = 0 | |
while predictions[i]["text"] == "": | |
i += 1 | |
best_non_null_pred = predictions[i] | |
# Then we compare to the null prediction using the threshold. | |
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"] | |
scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable. | |
if score_diff > null_score_diff_threshold: | |
all_predictions[example["id"]] = "" | |
else: | |
all_predictions[example["id"]] = best_non_null_pred["text"] | |
# Make `predictions` JSON-serializable by casting np.float back to float. | |
all_nbest_json[example["id"]] = [ | |
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} | |
for pred in predictions | |
] | |
# If we have an output_dir, let's save all those dicts. | |
if output_dir is not None: | |
if not os.path.isdir(output_dir): | |
raise EnvironmentError(f"{output_dir} is not a directory.") | |
prediction_file = os.path.join( | |
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" | |
) | |
nbest_file = os.path.join( | |
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" | |
) | |
if version_2_with_negative: | |
null_odds_file = os.path.join( | |
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" | |
) | |
logger.info(f"Saving predictions to {prediction_file}.") | |
with open(prediction_file, "w") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
logger.info(f"Saving nbest_preds to {nbest_file}.") | |
with open(nbest_file, "w") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
if version_2_with_negative: | |
logger.info(f"Saving null_odds to {null_odds_file}.") | |
with open(null_odds_file, "w") as writer: | |
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | |
return all_predictions | |
def post_processing_function_qa(examples, features, predictions, version_2_with_negative, config, stage="eval"): | |
# Post-processing: we match the start logits and end logits to answers in the original context. | |
predictions = postprocess_qa_predictions( | |
examples=examples, | |
features=features, | |
predictions=predictions, | |
version_2_with_negative=version_2_with_negative, | |
n_best_size=20, | |
max_answer_length=30, | |
null_score_diff_threshold=0.0, | |
output_dir=None, | |
prefix=stage, | |
config=config, | |
) | |
# Format the result to the format the metric expects. | |
if version_2_with_negative: | |
formatted_predictions = [ | |
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
] | |
else: | |
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
references = [{"id": str(ex["id"]), "answers": ex[config.answer_column]} for ex in examples] | |
return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
def compute_metrics(pred, eval_dataset, eval_examples, use_v2, config): | |
preds, label_ids = post_processing_function_qa(eval_examples, eval_dataset, pred.predictions, use_v2, config) | |
if use_v2: | |
result = SQUAD_V2_METRIC.compute(predictions=preds, references=label_ids) | |
else: | |
result = SQUAD_METRIC.compute(predictions=preds, references=label_ids) | |
return {k: round(v, 4) for k, v in result.items()} | |
def create_model_card(config, trainer): | |
if config.valid_split is not None: | |
eval_scores = trainer.evaluate() | |
eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items()] | |
eval_scores = "\n\n".join(eval_scores) | |
else: | |
eval_scores = "No validation metrics available" | |
if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path): | |
dataset_tag = "" | |
else: | |
dataset_tag = f"\ndatasets:\n- {config.data_path}" | |
if os.path.isdir(config.model): | |
base_model = "" | |
else: | |
base_model = f"\nbase_model: {config.model}" | |
model_card = MODEL_CARD.format( | |
dataset_tag=dataset_tag, | |
validation_metrics=eval_scores, | |
base_model=base_model, | |
) | |
return model_card | |
def prepare_qa_validation_features(examples, tokenizer, config): | |
# Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
# left whitespace | |
pad_on_right = tokenizer.padding_side == "right" | |
examples[config.question_column] = [q.lstrip() for q in examples[config.question_column]] | |
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
# in one example possible giving several features when a context is long, each of those features having a | |
# context that overlaps a bit the context of the previous feature. | |
tokenized_examples = tokenizer( | |
examples[config.question_column if pad_on_right else config.text_column], | |
examples[config.text_column if pad_on_right else config.question_column], | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=config.max_seq_length, | |
stride=config.max_doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding="max_length", | |
) | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
# corresponding example_id and we will store the offset mappings. | |
tokenized_examples["example_id"] = [] | |
for i in range(len(tokenized_examples["input_ids"])): | |
# Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
sequence_ids = tokenized_examples.sequence_ids(i) | |
context_index = 1 if pad_on_right else 0 | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
# position is part of the context or not. | |
tokenized_examples["offset_mapping"][i] = [ | |
(o if sequence_ids[k] == context_index else None) | |
for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
] | |
return tokenized_examples | |