Spaces:
Sleeping
Sleeping
from typing import Optional | |
from pydantic import Field | |
from autotrain.trainers.common import AutoTrainParams | |
class TextClassificationParams(AutoTrainParams): | |
""" | |
[`TextClassificationParams`] is a configuration class for text classification training parameters. | |
Attributes: | |
data_path (str): Path to the dataset. | |
model (str): Name of the model to use. Default is "bert-base-uncased". | |
lr (float): Learning rate. Default is 5e-5. | |
epochs (int): Number of training epochs. Default is 3. | |
max_seq_length (int): Maximum sequence length. Default is 128. | |
batch_size (int): Training batch size. Default is 8. | |
warmup_ratio (float): Warmup proportion. Default is 0.1. | |
gradient_accumulation (int): Number of gradient accumulation steps. Default is 1. | |
optimizer (str): Optimizer to use. Default is "adamw_torch". | |
scheduler (str): Scheduler to use. Default is "linear". | |
weight_decay (float): Weight decay. Default is 0.0. | |
max_grad_norm (float): Maximum gradient norm. Default is 1.0. | |
seed (int): Random seed. Default is 42. | |
train_split (str): Name of the training split. Default is "train". | |
valid_split (Optional[str]): Name of the validation split. Default is None. | |
text_column (str): Name of the text column in the dataset. Default is "text". | |
target_column (str): Name of the target column in the dataset. Default is "target". | |
logging_steps (int): Number of steps between logging. Default is -1. | |
project_name (str): Name of the project. Default is "project-name". | |
auto_find_batch_size (bool): Whether to automatically find the batch size. Default is False. | |
mixed_precision (Optional[str]): Mixed precision setting (fp16, bf16, or None). Default is None. | |
save_total_limit (int): Total number of checkpoints to save. Default is 1. | |
token (Optional[str]): Hub token for authentication. Default is None. | |
push_to_hub (bool): Whether to push the model to the hub. Default is False. | |
eval_strategy (str): Evaluation strategy. Default is "epoch". | |
username (Optional[str]): Hugging Face username. Default is None. | |
log (str): Logging method for experiment tracking. Default is "none". | |
early_stopping_patience (int): Number of epochs with no improvement after which training will be stopped. Default is 5. | |
early_stopping_threshold (float): Threshold for measuring the new optimum to continue training. Default is 0.01. | |
""" | |
data_path: str = Field(None, title="Data path") | |
model: str = Field("bert-base-uncased", title="Model name") | |
lr: float = Field(5e-5, title="Learning rate") | |
epochs: int = Field(3, title="Number of training epochs") | |
max_seq_length: int = Field(128, title="Max sequence length") | |
batch_size: int = Field(8, title="Training batch size") | |
warmup_ratio: float = Field(0.1, title="Warmup proportion") | |
gradient_accumulation: int = Field(1, title="Gradient accumulation steps") | |
optimizer: str = Field("adamw_torch", title="Optimizer") | |
scheduler: str = Field("linear", title="Scheduler") | |
weight_decay: float = Field(0.0, title="Weight decay") | |
max_grad_norm: float = Field(1.0, title="Max gradient norm") | |
seed: int = Field(42, title="Seed") | |
train_split: str = Field("train", title="Train split") | |
valid_split: Optional[str] = Field(None, title="Validation split") | |
text_column: str = Field("text", title="Text column") | |
target_column: str = Field("target", title="Target column") | |
logging_steps: int = Field(-1, title="Logging steps") | |
project_name: str = Field("project-name", title="Output directory") | |
auto_find_batch_size: bool = Field(False, title="Auto find batch size") | |
mixed_precision: Optional[str] = Field(None, title="fp16, bf16, or None") | |
save_total_limit: int = Field(1, title="Save total limit") | |
token: Optional[str] = Field(None, title="Hub Token") | |
push_to_hub: bool = Field(False, title="Push to hub") | |
eval_strategy: str = Field("epoch", title="Evaluation strategy") | |
username: Optional[str] = Field(None, title="Hugging Face Username") | |
log: str = Field("none", title="Logging using experiment tracking") | |
early_stopping_patience: int = Field(5, title="Early stopping patience") | |
early_stopping_threshold: float = Field(0.01, title="Early stopping threshold") | |