from typing import Optional from pydantic import Field from autotrain.trainers.common import AutoTrainParams class ObjectDetectionParams(AutoTrainParams): """ ObjectDetectionParams is a configuration class for object detection training parameters. Attributes: data_path (str): Path to the dataset. model (str): Name of the model to be used. Default is "google/vit-base-patch16-224". username (Optional[str]): Hugging Face Username. lr (float): Learning rate. Default is 5e-5. epochs (int): Number of training epochs. Default is 3. batch_size (int): Training batch size. Default is 8. warmup_ratio (float): Warmup proportion. Default is 0.1. gradient_accumulation (int): Gradient accumulation steps. Default is 1. optimizer (str): Optimizer to be used. Default is "adamw_torch". scheduler (str): Scheduler to be used. Default is "linear". weight_decay (float): Weight decay. Default is 0.0. max_grad_norm (float): Max gradient norm. Default is 1.0. seed (int): Random seed. Default is 42. train_split (str): Name of the training data split. Default is "train". valid_split (Optional[str]): Name of the validation data split. logging_steps (int): Number of steps between logging. Default is -1. project_name (str): Name of the project for output directory. Default is "project-name". auto_find_batch_size (bool): Whether to automatically find batch size. Default is False. mixed_precision (Optional[str]): Mixed precision type (fp16, bf16, or None). save_total_limit (int): Total number of checkpoints to save. Default is 1. token (Optional[str]): Hub Token for authentication. push_to_hub (bool): Whether to push the model to the Hugging Face Hub. Default is False. eval_strategy (str): Evaluation strategy. Default is "epoch". image_column (str): Name of the image column in the dataset. Default is "image". objects_column (str): Name of the target column in the dataset. Default is "objects". log (str): Logging method for experiment tracking. Default is "none". image_square_size (Optional[int]): Longest size to which the image will be resized, then padded to square. Default is 600. early_stopping_patience (int): Number of epochs with no improvement after which training will be stopped. Default is 5. early_stopping_threshold (float): Minimum change to qualify as an improvement. Default is 0.01. """ data_path: str = Field(None, title="Data path") model: str = Field("google/vit-base-patch16-224", title="Model name") username: Optional[str] = Field(None, title="Hugging Face Username") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: Optional[str] = Field(None, title="Validation split") logging_steps: int = Field(-1, title="Logging steps") project_name: str = Field("project-name", title="Output directory") auto_find_batch_size: bool = Field(False, title="Auto find batch size") mixed_precision: Optional[str] = Field(None, title="fp16, bf16, or None") save_total_limit: int = Field(1, title="Save total limit") token: Optional[str] = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") eval_strategy: str = Field("epoch", title="Evaluation strategy") image_column: str = Field("image", title="Image column") objects_column: str = Field("objects", title="Target column") log: str = Field("none", title="Logging using experiment tracking") image_square_size: Optional[int] = Field( 600, title="Image longest size will be resized to this value, then image will be padded to square." ) early_stopping_patience: int = Field(5, title="Early stopping patience") early_stopping_threshold: float = Field(0.01, title="Early stopping threshold")