from typing import Optional from pydantic import Field from autotrain.trainers.common import AutoTrainParams class TextRegressionParams(AutoTrainParams): """ TextRegressionParams is a configuration class for setting up text regression training parameters. Attributes: data_path (str): Path to the dataset. model (str): Name of the pre-trained model to use. Default is "bert-base-uncased". lr (float): Learning rate for the optimizer. Default is 5e-5. epochs (int): Number of training epochs. Default is 3. max_seq_length (int): Maximum sequence length for the inputs. Default is 128. batch_size (int): Batch size for training. Default is 8. warmup_ratio (float): Proportion of training to perform learning rate warmup. Default is 0.1. gradient_accumulation (int): Number of steps to accumulate gradients before updating. Default is 1. optimizer (str): Optimizer to use. Default is "adamw_torch". scheduler (str): Learning rate scheduler to use. Default is "linear". weight_decay (float): Weight decay to apply. Default is 0.0. max_grad_norm (float): Maximum norm for the gradients. Default is 1.0. seed (int): Random seed for reproducibility. Default is 42. train_split (str): Name of the training data split. Default is "train". valid_split (Optional[str]): Name of the validation data split. Default is None. text_column (str): Name of the column containing text data. Default is "text". target_column (str): Name of the column containing target data. Default is "target". logging_steps (int): Number of steps between logging. Default is -1 (no logging). project_name (str): Name of the project for output directory. Default is "project-name". auto_find_batch_size (bool): Whether to automatically find the batch size. Default is False. mixed_precision (Optional[str]): Mixed precision training mode (fp16, bf16, or None). Default is None. save_total_limit (int): Maximum number of checkpoints to save. Default is 1. token (Optional[str]): Token for accessing Hugging Face Hub. Default is None. push_to_hub (bool): Whether to push the model to Hugging Face Hub. Default is False. eval_strategy (str): Evaluation strategy to use. Default is "epoch". username (Optional[str]): Hugging Face username. Default is None. log (str): Logging method for experiment tracking. Default is "none". early_stopping_patience (int): Number of epochs with no improvement after which training will be stopped. Default is 5. early_stopping_threshold (float): Threshold for measuring the new optimum, to qualify as an improvement. Default is 0.01. """ data_path: str = Field(None, title="Data path") model: str = Field("bert-base-uncased", title="Model name") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") max_seq_length: int = Field(128, title="Max sequence length") batch_size: int = Field(8, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: Optional[str] = Field(None, title="Validation split") text_column: str = Field("text", title="Text column") target_column: str = Field("target", title="Target column(s)") logging_steps: int = Field(-1, title="Logging steps") project_name: str = Field("project-name", title="Output directory") auto_find_batch_size: bool = Field(False, title="Auto find batch size") mixed_precision: Optional[str] = Field(None, title="fp16, bf16, or None") save_total_limit: int = Field(1, title="Save total limit") token: Optional[str] = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") eval_strategy: str = Field("epoch", title="Evaluation strategy") username: Optional[str] = Field(None, title="Hugging Face Username") log: str = Field("none", title="Logging using experiment tracking") early_stopping_patience: int = Field(5, title="Early stopping patience") early_stopping_threshold: float = Field(0.01, title="Early stopping threshold")