hari7261 commited on
Commit
361b22f
·
verified ·
1 Parent(s): 4ee7dce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -56
app.py CHANGED
@@ -1,62 +1,18 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
 
4
 
5
- client = InferenceClient("hari7261/TechChat")
 
6
 
 
 
7
 
8
- def respond(
9
- message,
10
- history: list[tuple[str, str]],
11
- system_message,
12
- max_tokens,
13
- temperature,
14
- top_p,
15
- ):
16
- messages = [{"role": "system", "content": system_message}]
17
 
18
- for val in history:
19
- if val[0]:
20
- messages.append({"role": "user", "content": val[0]})
21
- if val[1]:
22
- messages.append({"role": "assistant", "content": val[1]})
23
 
24
- messages.append({"role": "user", "content": message})
25
-
26
- response = ""
27
-
28
- for message in client.chat_completion(
29
- messages,
30
- max_tokens=max_tokens,
31
- stream=True,
32
- temperature=temperature,
33
- top_p=top_p,
34
- ):
35
- token = message.choices[0].delta.content
36
-
37
- response += token
38
- yield response
39
-
40
-
41
- """
42
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
43
- """
44
- demo = gr.ChatInterface(
45
- respond,
46
- additional_inputs=[
47
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
48
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
49
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
50
- gr.Slider(
51
- minimum=0.1,
52
- maximum=1.0,
53
- value=0.95,
54
- step=0.05,
55
- label="Top-p (nucleus sampling)",
56
- ),
57
- ],
58
- )
59
-
60
-
61
- if __name__ == "__main__":
62
- demo.launch()
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import torch
3
 
4
+ model_name = "hari7261/TechChat"
5
 
6
+ # If the repo is private, add your token:
7
+ token = "your_huggingface_token_here" # or set HF_TOKEN env var
8
 
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token)
11
 
12
+ prompt = "Hello, how can I help you today?"
13
+ inputs = tokenizer(prompt, return_tensors="pt")
 
 
 
 
 
 
 
14
 
15
+ with torch.no_grad():
16
+ outputs = model.generate(**inputs, max_length=50)
 
 
 
17
 
18
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))