File size: 7,622 Bytes
525a6df
 
 
 
e438efd
 
525a6df
9a99cab
129ce22
f809c5d
525a6df
 
 
01c40ff
525a6df
 
 
8254f87
525a6df
 
 
 
 
d50a100
 
525a6df
6cb6d95
 
 
b4194f8
6cb6d95
b4194f8
 
6cb6d95
35d3b6b
88ac4c8
6cb6d95
 
 
 
 
 
b4194f8
6cb6d95
88ac4c8
 
 
 
 
 
 
 
81983b3
88ac4c8
 
6cb6d95
 
 
 
18f229b
6cb6d95
 
35d3b6b
 
 
d2a3523
 
35d3b6b
 
 
 
 
 
 
d2a3523
 
35d3b6b
 
 
 
 
88ac4c8
 
81983b3
f1853ff
81983b3
c0facca
 
 
b4194f8
 
 
8f216a7
b4194f8
 
5c71bdb
1a731a9
 
b4194f8
c0facca
bc335c9
 
1a731a9
9603556
1eaab3f
b4194f8
 
 
b63e42a
 
b4194f8
 
 
1a731a9
b4194f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b63e42a
 
b4194f8
 
b63e42a
b4194f8
545563d
b4194f8
 
 
525a6df
b63e42a
b4194f8
a023ee5
9493629
b4194f8
 
 
 
 
 
 
 
 
b63e42a
 
 
 
b4194f8
 
b63e42a
 
b4194f8
b63e42a
 
b4194f8
 
 
 
 
 
b63e42a
b4194f8
b63e42a
525a6df
 
 
 
 
4541211
 
 
 
 
 
 
525a6df
28e2fd0
 
ab80c92
545563d
ab80c92
8591eb2
 
b4194f8
525a6df
 
 
 
 
6d6aff3
525a6df
 
 
6d6aff3
525a6df
 
4541211
525a6df
51be45a
 
525a6df
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import plotly.graph_objects as go
import os
from collections import defaultdict
import igraph as ig


# print(os.pwd())

species_to_imgpath = {'bird': './descendent_specific_topk_heatmap_withbb_ep=last_024+051'}

# this has to be there for each species
imgname_to_filepath = {} # this ignores the extension such as .png
nodename_to_protoIDs = defaultdict(list)

for species, imgpath in species_to_imgpath.items():
    for foldername in os.listdir(imgpath):
        if os.path.isdir(os.path.join(imgpath, foldername)):
            folderpath = os.path.join(imgpath, foldername)
            for filename in os.listdir(folderpath):
                if filename.endswith('png') or filename.endswith('jpg'):
                    filepath = os.path.join(folderpath, filename)
                    imgname_to_filepath[filename] = filepath
                    nodename = filename.split('.')[0].split('-')[0]
                    protoID = filename.split('.')[0].split('-')[1]
                    nodename_to_protoIDs[nodename].append(protoID)


class Node():
    id = 0
    def __init__(self, name):
        self.id = Node.id
        Node.id += 1
        self.name = name
        self.parent = None
        self.children = [] # list of type Node

    def add_child(child):
            self.children.append(child)


name_to_node = {}
id_to_node = {}

def get_root(node):
    root = node
    while node:
        root = node
        node = node.parent

    return root


def get_tree(imgpath):
    
    for foldername in os.listdir(imgpath):
        if os.path.isdir(os.path.join(imgpath, foldername)):
            folderpath = os.path.join(imgpath, foldername)
            node_name = foldername
            child_names = list(set([filename.split('.')[0].split('-')[0] for filename in os.listdir(folderpath)]))

            if node_name in name_to_node:
                node = name_to_node[node_name]
            else:
                node = Node(node_name)
                name_to_node[node_name] = node
                id_to_node[node.id] = node
                
            child_nodes = []
            for child_name in child_names:
                if child_name in name_to_node:
                    child_node = name_to_node[child_name]
                else:
                    child_node = Node(child_name)
                    name_to_node[child_name] = child_node
                    id_to_node[child_node.id] = child_node
                child_node.parent = node
                child_nodes.append(child_node)

            node.children = child_nodes
            
        # To be finished
    return get_root(node)
                 


ROOT = None


def create_binary_tree_edges(root):
    edges = []
    prev = [root]
    while len(prev) > 0:
        new_prev = []
        for node in prev:
            # print(node.children, '\n')
            edges = edges + [(node.id, child.id) for child in node.children]
            new_prev = new_prev + [child for child in node.children if (len(child.children) > 0)]
        prev = new_prev

        # print(edges)
        # print('-*'*20, '\n')

    return edges

def plot_tree_using_igraph():
    # Define the edges in a tree structure
    # edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]

    root = ROOT
    edges = create_binary_tree_edges(root)
    # edges = [(str(n1), str(n2)) for (n1, n2) in edges]

    # print(edges)
    
    # Create an igraph Graph from the edge list
    g = ig.Graph(edges, directed=True)
    
    # Validate the root index
    if g.vcount() > 0:  # Check if the graph has any vertices
        root_vertex_id = 0  # This assumes that vertex '0' is the root
    else:
        print("The graph has no vertices.")
        return None

    # Use the Reingold-Tilford layout to position the nodes
    try:
        layout = g.layout_reingold_tilford(root=None)  # Correct root specification
    except Exception as e:
        print(f"Error computing layout: {e}")
        return None

    # Edge traces
    edge_x = []
    edge_y = []
    for edge in edges:
        start_idx, end_idx = edge
        x0, y0 = layout.coords[start_idx]
        x1, y1 = layout.coords[end_idx]
        edge_x.extend([x0, x1, None])
        edge_y.extend([-y0, -y1, None])  # y values are inverted to make the tree top-down

    edge_trace = go.Scatter(
        x=edge_x, y=edge_y,
        line=dict(width=0.5, color='#888'),
        hoverinfo='none',
        mode='lines')

    # Node traces
    node_x = [pos[0] for pos in layout.coords]
    node_y = [-pos[1] for pos in layout.coords]  # y values are inverted

    node_trace = go.Scatter(
        x=node_x, y=node_y,
        text=[id_to_node[i].name for i in range(len(layout.coords))],
        # text=["Node {}".format(i) for i in range(len(layout.coords))],
        mode='markers+text',
        hoverinfo='text',
        marker=dict(
            showscale=False,
            size=10,
            color='LightSkyBlue'
        ),
        textposition="bottom center"
    )

    # Create a Plotly figure
    fig = go.Figure(data=[edge_trace, node_trace],
                    layout=go.Layout(
                        title='<b>Tree Layout with iGraph and Plotly</b>',
                        titlefont_size=16,
                        showlegend=False,
                        hovermode='closest',
                        margin=dict(b=0, l=0, r=0, t=50),
                        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                        # height=600,
                        # width=600,
                        annotations=[dict(
                            showarrow=False,
                            xref="paper", yref="paper",
                            x=0.005, y=-0.002 )]
                    ))

    return fig


def get_protoIDs(nodename):
    return gr.Dropdown(choices=nodename_to_protoIDs[nodename], interactive=True)


def get_image(nodename, protoID):
    imgname = '-'.join([nodename, protoID]) + '.png'
    filepath = imgname_to_filepath[imgname]
    return gr.Image(filepath)
    

with gr.Blocks() as demo:

    imgpath = species_to_imgpath['bird']
    print(imgpath)
    ROOT = get_tree(imgpath)
    print(ROOT.name)
    gr.Markdown("## Interactive Tree and Image Display")
    with gr.Row():
        tree_output = gr.Plot(plot_tree_using_igraph)  # Connect the function directly
    
    with gr.Row():
        with gr.Column():
            dropdown_1_nodename = gr.Dropdown(label="Select a node name", choices=list(nodename_to_protoIDs.keys()))
            dropdown_1_protos = gr.Dropdown(label="Select a prototype ID", choices=[], allow_custom_value=True)
            image_output_1 = gr.Image()
        with gr.Column():
            dropdown_2_nodename = gr.Dropdown(label="Select a node name", choices=list(nodename_to_protoIDs.keys()))
            dropdown_2_protos = gr.Dropdown(label="Select a prototype ID", choices=[], allow_custom_value=True)
            image_output_2 = gr.Image()

        dropdown_1_nodename.change(get_protoIDs, dropdown_1_nodename, dropdown_1_protos)
        dropdown_1_protos.change(get_image, [dropdown_1_nodename, dropdown_1_protos], image_output_1)
        dropdown_2_nodename.change(get_protoIDs, dropdown_2_nodename, dropdown_2_protos)
        dropdown_2_protos.change(get_image, [dropdown_2_nodename, dropdown_2_protos], image_output_2)
        

# Initialize with placeholder images
# image_output_1.update(display_image_based_on_dropdown_1)
# image_output_2.update(display_image_based_on_dropdown_2)

demo.launch()